Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytotherapy ; 26(1): 81-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37930292

RESUMEN

Cardiac fibroblasts (CFs) are critical components of the cardiac niche and primarily responsible for assembly and maintenance of the cardiac extracellular matrix (ECM). CFs are increasingly of interest for tissue engineering and drug development applications, as they provide synergistic support to cardiomyocytes through direct cell-to-cell signaling and cell-to-ECM interactions via soluble factors, including cytokines, growth factors and extracellular vesicles. CFs can be activated to a cardiac myofibroblast (CMF) phenotype upon injury or stimulation with transforming growth factor beta 1. Once activated, CMFs assemble collagen-rich ECM, which is vitally important to stabilize scar formation following myocardial infarction, for example. Although there is greater experience with culture expansion of CFs among non-human strains, very little is known about human CF-to-CMF transitions and expression patterns during culture expansion. In this study, we evaluated for shifts in inflammatory and angiogenic expression profiles of human CFs in typical culture expansion conditions. Understanding shifts in cellular expression patterns during CF culture expansion is critically important to establish quality benchmarks and optimize large-scale manufacturing for future clinical applications.


Asunto(s)
Miocardio , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Secretoma , Fibroblastos , Fenotipo , Expresión Génica
2.
Exp Cell Res ; 399(2): 112489, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33453237

RESUMEN

Cardiac fibroblasts and myofibroblasts assemble and maintain extracellular matrix during normal development and following injury. Culture expansion of these cells yield a bioengineered matrix that could lead to intriguing therapeutic opportunities. For example, we reported that cultured rat cardiac fibroblasts form a matrix that can be used to delivery therapeutic stem cells. Furthermore, we reported that matrix derived from cultured human cardiac fibroblasts/myofibroblasts converted monocytes into macrophages that express interesting anti-inflammatory and pro-angiogenic properties. Expanding these matrix investigations require characterization of the source cells for quality control. In these efforts, we observed and herein report that Sushi Containing Domain 2 (SUSD2) is a novel and consistent marker for cultured human cardiac fibroblast and myofibroblasts.


Asunto(s)
Matriz Extracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Miocardio/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Matriz Extracelular/fisiología , Femenino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/genética , Miocardio/citología , Miofibroblastos/metabolismo
3.
Biol Blood Marrow Transplant ; 25(11): 2124-2133, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31394269

RESUMEN

In the setting of radiation-induced trauma, exposure to high levels of radiation can cause an acute radiation syndrome (ARS) causing bone marrow (BM) failure, leading to life-threatening infections, anemia, and thrombocytopenia. We have previously shown that human macrophages educated with human mesenchymal stem cells (MSCs) by coculture can significantly enhance survival of mice exposed to lethal irradiation. In this study, we investigated whether exosomes isolated from MSCs could replace direct coculture with MSCs to generate exosome educated macrophages (EEMs). Functionally unique phenotypes were observed by educating macrophages with exosomes from MSCs (EEMs) primed with bacterial lipopolysaccharide (LPS) at different concentrations (LPS-low EEMs or LPS-high EEMs). LPS-high EEMs were significantly more effective than uneducated macrophages, MSCs, EEMs, or LPS-low EEMs in extending survival after lethal ARS in vivo. Moreover, LPS-high EEMs significantly reduced clinical signs of radiation injury and restored hematopoietic tissue in the BM and spleen as determined by complete blood counts and histology. LPS-high EEMs showed significant increases in gene expression of STAT3, secretion of cytokines like IL-10 and IL-15, and production of growth factors like FLT-3L. LPS-EEMs also showed increased phagocytic activity, which may aid with tissue remodeling. LPS-high EEMs have the potential to be an effective cellular therapy for the management of ARS.


Asunto(s)
Síndrome de Radiación Aguda/terapia , Exosomas/trasplante , Hematopoyesis , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Traumatismos Experimentales por Radiación/terapia , Síndrome de Radiación Aguda/metabolismo , Síndrome de Radiación Aguda/patología , Animales , Exosomas/metabolismo , Exosomas/patología , Femenino , Humanos , Lipopolisacáridos/farmacología , Macrófagos/patología , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos NOD , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
4.
Am J Physiol Heart Circ Physiol ; 316(5): H1005-H1013, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822119

RESUMEN

Right ventricular failure (RVF) is a common cause of death in patients suffering from pulmonary arterial hypertension (PAH). The current treatment for PAH only moderately improves symptoms, and RVF ultimately occurs. Therefore, it is necessary to develop new treatment strategies to protect against right ventricle (RV) maladaptation despite PAH progression. In this study, we hypothesize that local mesenchymal stem cell (MSC) delivery via a novel bioscaffold can improve RV function despite persistent PAH. To test our hypothesis, we induced PAH in adult rats with SU5416 and chronic hypoxia exposure; treated with rat MSCs delivered by intravenous injection, intramyocardial injection, or epicardial placement of a bioscaffold; and then examined treatment effectiveness by in vivo pressure-volume measurement, echocardiography, histology, and immunohistochemistry. Our results showed that compared with other treatment groups, only the MSC-seeded bioscaffold group resulted in RV functional improvement, including restored stroke volume, cardiac output, and improved stroke work. Diastolic function indicated by end-diastolic pressure-volume relationship was improved by the local MSC treatments or bioscaffold alone. Cardiomyocyte hypertrophy and RV fibrosis were both reduced, and von Willebrand factor expression was restored by the MSC-seeded bioscaffold treatment. Overall, our study suggests a potential new regenerative therapy to rescue the pressure-overload failing RV with persistent pulmonary vascular disease, which may improve quality of life and/or survival of PAH patients. NEW & NOTEWORTHY We explored the effects of mesenchymal stem cell-seeded bioscaffold on right ventricles (RVs) of rats with established pulmonary arterial hypertension (PAH). Some beneficial effects were observed despite persistent PAH, suggesting that this may be a new therapy for RV to improve quality of life and/or survival of PAH patients.


Asunto(s)
Presión Arterial , Hipertrofia Ventricular Derecha/cirugía , Trasplante de Células Madre Mesenquimatosas/métodos , Hipertensión Arterial Pulmonar/cirugía , Arteria Pulmonar/fisiopatología , Andamios del Tejido , Disfunción Ventricular Derecha/cirugía , Función Ventricular Derecha , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , Hipoxia/complicaciones , Indoles , Masculino , Contracción Miocárdica , Miocardio/metabolismo , Miocardio/patología , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Pirroles , Ratas Sprague-Dawley , Recuperación de la Función , Regeneración , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/metabolismo , Disfunción Ventricular Derecha/fisiopatología , Remodelación Ventricular , Factor de von Willebrand/metabolismo
5.
Adv Exp Med Biol ; 1098: 115-130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30238368

RESUMEN

Tissue engineering and regenerative medicine have adopted the use of extracellular matrix (ECM) as a cell delivery device and bioactive regenerative agent. To this end, many ECMs have been investigated for cardiac tissue engineering and regenerative medicine applications with variable success. Many sources of natural ECMs have been tested for cardiac applications. Typically, natural ECMs have been made from decellularized organs or tissues and processed into either sheets or injectable hydrogels. This chapter will review natural sources of ECM materials that have been tested as therapeutic agents in models of heart failure.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/métodos , Matriz Extracelular , Insuficiencia Cardíaca/cirugía , Medicina Regenerativa/métodos , Andamios del Tejido , Animales , Procesos de Crecimiento Celular , Matriz Extracelular/fisiología , Predicción , Humanos , Intestino Delgado/ultraestructura , Ratones , Modelos Animales , Miocardio/ultraestructura , Especificidad de Órganos , Pericardio/ultraestructura , Conejos , Especificidad de la Especie , Trasplante de Células Madre/métodos , Porcinos , Vejiga Urinaria/ultraestructura , Pez Cebra
6.
Cytotherapy ; 18(4): 536-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26971682

RESUMEN

BACKGROUND AIMS: In the field of cellular therapy, potential cell entrapment in the lungs following intravenous administration in a compromised or injured pulmonary system is an important concern that requires further investigation. We developed a rat model of inflammatory and fibrotic lung disease to mimic the human clinical condition of obliterative bronchiolitis (OB) and evaluate the safety of intravenous infusion of mesenchymal stromal cells (MSCs). This model was used to obtain appropriate safety information and functional characterization to support the translation of an ex vivo-generated cellular product into human clinical trials. To overcome spontaneous recovery and size limitations associated with current animal models, we used a novel multiple dose bleomycin strategy to induce lasting lung injury in rats. METHODS: Intratracheal instillation of bleomycin was administered to rats on multiple days. MSCs were intravenously infused 7 days apart. Detailed pulmonary function tests including forced expiratory volume, total lung capacity, and invasive hemodynamic measurements were conducted to define the representative disease model and monitor cardiopulmonary hemodynamic consequences of the cell infusion. Post-euthanasia assessments included a thorough evaluation of lung morphology and histopathology. RESULTS: The double dose bleomycin instillation regimen resulted in severe and irreversible lung injury and fibrosis. Cardiopulmonary physiological monitoring reveled that no adverse events could be attributed to the cell infusion process. DISCUSSION: Although our study did not show the infusion of MSCs to result in an improvement in lung function or rescue of damaged tissue this study does confirm the safety of MSC infusion into damaged lungs.


Asunto(s)
Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/terapia , Pulmón/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Miocardio/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/fisiopatología , Animales , Bleomicina , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Humanos , Infusiones Intravenosas , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Ratas , Ratas Sprague-Dawley , Pruebas de Función Respiratoria
7.
Cytotherapy ; 16(12): 1720-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25239491

RESUMEN

BACKGROUND AIMS: CD133+ cells confer angiogenic potential and may be beneficial for the treatment of critical limb ischemia (CLI). However, patient selection, blinding methods and end points for clinical trials are challenging. We hypothesized that bilateral intramuscular administration of cytokine-mobilized CD133+ cells in ambulatory patients with refractory CLI would be feasible and safe. METHODS: In this double-blind, randomized sham-controlled trial, subjects received subcutaneous injections of granulocyte colony-stimulating factor (10 µg/kg per day) for 5 days, followed by leukapheresis, and intramuscular administration of 50-400 million sorted CD133+ cells delivered into both legs. Control subjects received normal saline injections, sham leukapheresis and intramuscular injection of placebo buffered solution. Subjects were followed for 1 year. An aliquot of CD133+ cells was collected from each subject to test for genes associated with cell senescence. RESULTS: Seventy subjects were screened, of whom 10 were eligible. Subject enrollment was suspended because of a high rate of mobilization failure in subjects randomly assigned to treatment. Of 10 subjects enrolled (7 randomly assigned to treatment, 3 randomly assigned to control), there were no differences in serious adverse events at 12 months, and blinding was preserved. There were non-significant trends toward improved amputation-free survival, 6-minute walk distance, walking impairment questionnaire and quality of life in subjects randomly assigned to treatment. Successful CD133+ mobilizers expressed fewer senescence-associated genes compared with poor mobilizers. CONCLUSIONS: Bilateral administration of autologous CD133+ cells in ambulatory CLI subjects was safe, and blinding was preserved. However, poor mobilization efficiency combined with high CD133+ senescence suggests futility in this approach.


Asunto(s)
Antígenos CD , Extremidades/irrigación sanguínea , Glicoproteínas , Isquemia/terapia , Péptidos , Enfermedad Arterial Periférica/terapia , Trasplante de Células Madre , Células Madre , Antígeno AC133 , Anciano , Autoinjertos , Método Doble Ciego , Extremidades/patología , Femenino , Estudios de Seguimiento , Humanos , Isquemia/patología , Masculino , Persona de Mediana Edad , Enfermedad Arterial Periférica/patología , Recuperación de la Función
8.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38405927

RESUMEN

BACKGROUND: The adult human heart following a large myocardial infarction is unable to regenerate heart muscle and instead forms scar with the risk of progressive heart failure. Large animal studies have shown that intramyocardial injection of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) following a myocardial infarction result in cell grafts but also ventricular arrhythmias. We hypothesized that intramyocardial injection of committed cardiac progenitor cells (CCPs) derived from iPSCs, combined with cardiac fibroblast-derived extracellular matrix (cECM) to enhance cell retention will: i) form cardiomyocyte containing functional grafts, ii) be free of ventricular arrhythmias and iii) restore left ventricular contractility in a post-myocardial infarction (MI) cardiomyopathy swine model. METHODS: hiPSCs were differentiated using bioreactors and small molecules to produce a population of committed cardiac progenitor cells (CCPs). MI was created using a coronary artery balloon occlusion and reperfusion model in Yucatan mini pigs. Four weeks later, epicardial needle injections of CCPs+cECM were performed in a small initial feasibility cohort, and then transendocardial injections (TEI) of CCPs+cECM, CCPs alone, cECM alone or vehicle control into the peri-infarct region in a larger randomized cohort. A 4-drug immunosuppression regimen was administered to prevent rejection of human CCPs. Arrhythmias were evaluated using implanted event recorders. Magnetic resonance imaging (MRI) and invasive pressure volume assessment were used to evaluate left ventricular anatomic and functional performance, including viability. Detailed histology was performed on the heart to detect human grafts. RESULTS: A scalable biomanufacturing protocol was developed generating CCPs which can efficiently differentiate to cardiomyocytes or endothelial cells in vitro. Intramyocardial delivery of CCPs to post-MI porcine hearts resulted in engraftment and differentiation of CCPs to form ventricular cardiomyocyte rich grafts. There was no significant difference in cardiac MRI-based measured cardiac volumes or function between control, CCP and CCP+cECM groups; however, dobutamine stimulated functional reserve was improved in CCP and CCP+cECM groups. TEI delivery of CCPs with or without cECM did not result in tumors or trigger ventricular arrhythmias. CONCLUSIONS: CCPs are a promising cell source for post-MI heart repair using clinically relevant TEI with a low risk of engraftment ventricular arrhythmias.

9.
Front Bioeng Biotechnol ; 11: 1102487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051268

RESUMEN

Introduction: Fibroblasts are mesenchymal cells that predominantly produce and maintain the extracellular matrix (ECM) and are critical mediators of injury response. In the heart, valve interstitial cells (VICs) are a population of fibroblasts responsible for maintaining the structure and function of heart valves. These cells are regionally distinct from myocardial fibroblasts, including left ventricular cardiac fibroblasts (LVCFBs), which are located in the myocardium in close vicinity to cardiomyocytes. Here, we hypothesize these subpopulations of fibroblasts are transcriptionally and functionally distinct. Methods: To compare these fibroblast subtypes, we collected patient-matched samples of human primary VICs and LVCFBs and performed bulk RNA sequencing, extracellular matrix profiling, and functional contraction and calcification assays. Results: Here, we identified combined expression of SUSD2 on a protein-level, and MEOX2, EBF2 and RHOU at a transcript-level to be differentially expressed in VICs compared to LVCFBs and demonstrated that expression of these genes can be used to distinguish between the two subpopulations. We found both VICs and LVCFBs expressed similar activation and contraction potential in vitro, but VICs showed an increase in ALP activity when activated and higher expression in matricellular proteins, including cartilage oligomeric protein and alpha 2-Heremans-Schmid glycoprotein, both of which are reported to be linked to calcification, compared to LVCFBs. Conclusion: These comparative transcriptomic, proteomic, and functional studies shed novel insight into the similarities and differences between valve interstitial cells and left ventricular cardiac fibroblasts and will aid in understanding region-specific cardiac pathologies, distinguishing between primary subpopulations of fibroblasts, and generating region-specific stem-cell derived cardiac fibroblasts.

10.
Am J Physiol Regul Integr Comp Physiol ; 301(2): R473-83, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21593427

RESUMEN

Recent studies indicate that a substantial amount of metabolically active brown adipose tissue (BAT) exists in adult humans. Given the unique ability of BAT to convert calories to heat, there is intense interest in understanding the regulation of BAT metabolism in hopes that its manipulation might be an effective way of expending excess calories. Because of the established role of AMP-activated protein kinase (AMPK) as a "metabolic master switch" and its extremely high levels of activity in BAT, it was hypothesized that AMPK might play a central role in regulating BAT metabolism. To test this hypothesis, whole body α(1)-AMPK(-/-) (knockout) and wild-type mice were studied 1) under control (room temperature) conditions, 2) during chronic cold exposure (14 days at 4°C), and 3) during acute nonshivering thermogenesis (injection of a ß(3)-adrenergic agonist). Under control conditions, loss of α(1)-AMPK resulted in downregulation of two important prothermogenic genes in BAT, thyrotropin-releasing hormone (-9.2-fold) and ciliary neurotrophic factor (-8.7-fold). Additionally, it caused significant upregulation of α(2)-AMPK activity in BAT, white adipose tissue, and liver, but not cardiac or skeletal muscle. During acute nonshivering thermogenesis and chronic cold exposure, body temperature was indistinguishable in the α(1)-AMPK(-/-) and wild-type mice. Similarly, the degree of cold-induced hyperphagia was identical in the two groups. We conclude that α(1)-AMPK does not play an obligatory role in these processes and that adaptations to chronic loss of α(1)-AMPK are able to compensate for its loss via several mechanisms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación de la Temperatura Corporal/fisiología , Frío , Regulación Enzimológica de la Expresión Génica/fisiología , Hiperfagia/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adaptación Fisiológica , Tejido Adiposo Pardo/metabolismo , Animales , Regulación de la Temperatura Corporal/genética , Peso Corporal , Genotipo , Hiperfagia/genética , Ratones , Ratones Noqueados , Tiritona/genética , Tiritona/fisiología
11.
J Immunol Regen Med ; 102020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33564732

RESUMEN

The polarization of monocytes into macrophages that possess anti-inflammatory and pro-angiogenic properties could provide a novel therapeutic strategy for patients who are at a high risk for developing heart failure following myocardial infarction (MI). Here in, we describe a novel method of "educating" monocytes into a distinct population of macrophages that exhibit anti-inflammatory and pro-angiogenic features through a 3-day culture on fibronectin-rich cardiac matrix (CX) manufactured using cultured human cardiac fibroblasts. Our data suggest that CX can educate monocytes into a unique macrophage population termed CX educated macrophages (CXMq) that secrete high levels of VEGF and IL-6. In vitro, CXMq also demonstrate the ability to recruit mesenchymal stromal cells (MSC) with known anti-inflammatory properties. Selective inhibition of fibronectin binding to αVß3 surface integrins on CXMq prevented MSC recruitment. This suggests that insoluble fibronectin within CX is, at least in part, responsible for CXMq conversion.

12.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118559, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31634503

RESUMEN

Native myocardium has limited regenerative potential post injury. Advances in lineage reprogramming have provided promising cellular sources for regenerative medicine in addition to research applications. Recently we have shown that adult mouse fibroblasts can be reprogrammed to expandable, multipotent, induced cardiac progenitor cells (iCPCs) by employing forced expression of five cardiac factors along with activation of canonical Wnt and JAK/STAT signaling. Here we aim to further characterize iCPCs by highlighting their safety, ease of attainability, and functionality within a three-dimensional cardiac extracellular matrix scaffold. Specifically, iCPCs did not form teratomas in contrast to embryonic stem cells when injected into immunodeficient mice. iCPC reprogramming was achieved in wild type mouse fibroblasts without requiring a cardiac-specific reporter, solely utilizing morphological changes to identify, clonally isolate, and expand iCPCs, thus increasing the versatility of this technology. iCPCs also show the ability to repopulate decellularized native heart scaffolds and differentiated into organized structures containing cardiomyocytes, smooth muscle, and endothelial cells. Optical mapping of recellularized scaffolds shows field-stimulated calcium transients that propagate across islands of reconstituted tissue and bipolar local stimulation demonstrates cell-cell coupling within scaffolds. Overall, iCPCs provide a readily attainable, scalable, safe, and functional cell source for a variety of application including drug discovery, disease modeling, and regenerative therapy.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias , Corazón/crecimiento & desarrollo , Ingeniería de Tejidos , Animales , Células Endoteliales/metabolismo , Matriz Extracelular/genética , Fibroblastos/metabolismo , Humanos , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología
13.
ESC Heart Fail ; 6(5): 1027-1040, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31520523

RESUMEN

AIMS: Fibroblast to myofibroblast trans-differentiation with altered bioenergetics precedes cardiac fibrosis (CF). Either prevention of differentiation or promotion of de-differentiation could mitigate CF-related pathologies. We determined whether 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors-statins, commonly prescribed to patients at risk of heart failure (HF)-can de-differentiate myofibroblasts, alter cellular bioenergetics, and impact the human ventricular fibroblasts (hVFs) in HF patients. METHODS AND RESULTS: Either in vitro statin treatment of differentiated myofibroblasts (n = 3-6) or hVFs, isolated from human HF patients under statin therapy (HF + statin) vs. without statins (HF) were randomly used (n = 4-12). In vitro, hVFs were differentiated by transforming growth factor-ß1 (TGF-ß1) for 72 h (TGF-72 h). Differentiation status and cellular oxygen consumption rate (OCR) were determined by α-smooth muscle actin (α-SMA) expression and Seahorse assay, respectively. Data are mean ± SEM except Seahorse (mean ± SD); P < 0.05, considered significant. In vitro, statins concentration-dependently de-differentiated the myofibroblasts. The respective half-maximal effective concentrations were 729 ± 13 nmol/L (atorvastatin), 3.6 ± 1 µmol/L (rosuvastatin), and 185 ± 13 nmol/L (simvastatin). Mevalonic acid (300 µmol/L), the reduced product of HMG-CoA, prevented the statin-induced de-differentiation (α-SMA expression: 31.4 ± 10% vs. 58.6 ± 12%). Geranylgeranyl pyrophosphate (GGPP, 20 µmol/L), a cholesterol synthesis-independent HMG-CoA reductase pathway intermediate, completely prevented the statin-induced de-differentiation (α-SMA/GAPDH ratios: 0.89 ± 0.05 [TGF-72 h + 72 h], 0.63 ± 0.02 [TGF-72 h + simvastatin], and 1.2 ± 0.08 [TGF-72 h + simvastatin + GGPP]). Cellular metabolism involvement was observed when co-incubation of simvastatin (200 nmol/L) with glibenclamide (10 µmol/L), a KATP channel inhibitor, attenuated the simvastatin-induced de-differentiation (0.84 ± 0.05). Direct inhibition of mitochondrial respiration by oligomycin (1 ng/mL) also produced a de-differentiation effect (0.33 ± 0.02). OCR (pmol O2 /min/µg protein) was significantly decreased in the simvastatin-treated hVFs, including basal (P = 0.002), ATP-linked (P = 0.01), proton leak-linked (P = 0.01), and maximal (P < 0.001). The OCR inhibition was prevented by GGPP (basal OCR [P = 0.02], spare capacity OCR [P = 0.008], and maximal OCR [P = 0.003]). Congruently, hVFs from HF showed an increased population of myofibroblasts while HF + statin group showed significantly reduced cellular respiration (basal OCR [P = 0.021], ATP-linked OCR [P = 0.047], maximal OCR [P = 0.02], and spare capacity OCR [P = 0.025]) and myofibroblast differentiation (α-SMA/GAPDH: 1 ± 0.19 vs. 0.23 ± 0.06, P = 0.01). CONCLUSIONS: This study demonstrates the de-differentiating effect of statins, the underlying GGPP sensitivity, reduced OCR with potential activation of KATP channels, and their impact on the differentiation magnitude of hVFs in HF patients. This novel pleiotropic effect of statins may be exploited to reduce excessive CF in patients at risk of HF.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico/farmacología , Miofibroblastos/efectos de los fármacos , Respiración/efectos de los fármacos , Simvastatina/farmacología , Actinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Fibrosis/prevención & control , Insuficiencia Cardíaca/patología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Ácido Mevalónico/uso terapéutico , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/fisiología , Miofibroblastos/fisiología , Oligomicinas/farmacología , Consumo de Oxígeno/efectos de los fármacos , Fosfatos de Poliisoprenilo/metabolismo , Simvastatina/uso terapéutico , Factor de Crecimiento Transformador beta1/metabolismo
14.
J Am Heart Assoc ; 8(20): e012748, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31597508

RESUMEN

Background Atrial fibrillation often occurs in the setting of hypertension and associated atrial dilation with pathologically increased cardiomyocyte stretch. In the setting of atrial dilation, mechanoelectric feedback has been linked to the development of ectopic beats that trigger paroxysmal atrial fibrillation mainly originating from pulmonary veins (PVs). However, the precise mechanisms remain poorly understood. Methods and Results We identify mechanosensitive, swelling-activated chloride ion channels (ICl,swell) as a crucial component of the caveolar mechanosensitive complex in rat and human cardiomyocytes. In vitro optical mapping of rat PV, single rat PV, and human cardiomyocyte patch clamp studies showed that stretch-induced activation of ICl,swell leads to membrane depolarization and decreased action potential amplitude, which trigger conduction discontinuities and both ectopic and reentrant activities within the PV. Reverse transcription quantitative polymerase chain reaction, immunofluorescence, and coimmunoprecipitation studies showed that ICl,swell likely consists of at least 2 components produced by mechanosensitive ClC-3 (chloride channel-3) and SWELL1 (also known as LRRC8A [leucine rich repeat containing protein 8A]) chloride channels, which form a macromolecular complex with caveolar scaffolding protein Cav3 (caveolin 3). Downregulation of Cav3 protein expression and disruption of caveolae structures during chronic hypertension in spontaneously hypertensive rats facilitates activation of ICl,swell and increases PV sensitivity to stretch 10- to 50-fold, promoting the development of atrial fibrillation. Conclusions Our findings identify caveolae-mediated activation of mechanosensitive ICl,swell as a critical cause of PV ectopic beats that can initiate atrial arrhythmias including atrial fibrillation. This mechanism is exacerbated in the setting of chronically elevated blood pressures.


Asunto(s)
Fibrilación Atrial/fisiopatología , Caveolas/metabolismo , Canales de Cloruro/metabolismo , Atrios Cardíacos/fisiopatología , Venas Pulmonares/metabolismo , Potenciales de Acción , Animales , Fibrilación Atrial/metabolismo , Modelos Animales de Enfermedad , Atrios Cardíacos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Venas Pulmonares/fisiopatología , Ratas , Ratas Endogámicas Dahl , Ratas Wistar
15.
Nat Commun ; 10(1): 2238, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110246

RESUMEN

Cardiac fibroblasts (CFs) play critical roles in heart development, homeostasis, and disease. The limited availability of human CFs from native heart impedes investigations of CF biology and their role in disease. Human pluripotent stem cells (hPSCs) provide a highly renewable and genetically defined cell source, but efficient methods to generate CFs from hPSCs have not been described. Here, we show differentiation of hPSCs using sequential modulation of Wnt and FGF signaling to generate second heart field progenitors that efficiently give rise to hPSC-CFs. The hPSC-CFs resemble native heart CFs in cell morphology, proliferation, gene expression, fibroblast marker expression, production of extracellular matrix and myofibroblast transformation induced by TGFß1 and angiotensin II. Furthermore, hPSC-CFs exhibit a more embryonic phenotype when compared to fetal and adult primary human CFs. Co-culture of hPSC-CFs with hPSC-derived cardiomyocytes distinctly alters the electrophysiological properties of the cardiomyocytes compared to co-culture with dermal fibroblasts. The hPSC-CFs provide a powerful cell source for research, drug discovery, precision medicine, and therapeutic applications in cardiac regeneration.


Asunto(s)
Diferenciación Celular , Fibroblastos/fisiología , Corazón/crecimiento & desarrollo , Células Madre Pluripotentes Inducidas/fisiología , Miocardio/citología , Línea Celular , Técnicas de Cocultivo/métodos , Dermis/citología , Voluntarios Sanos , Humanos , Microscopía Intravital , Microscopía Fluorescente , Cultivo Primario de Células
16.
Stem Cells Transl Med ; 5(12): 1668-1675, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27460855

RESUMEN

: Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. SIGNIFICANCE: Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries.


Asunto(s)
Imagenología Tridimensional , Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Humanos , Infusiones Intravenosas , Lesión Pulmonar/patología , Microscopía Fluorescente , Especificidad de Órganos , Ratas Sprague-Dawley , Distribución Tisular
17.
Artículo en Inglés | MEDLINE | ID: mdl-28462012

RESUMEN

The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair, underscoring its potential for cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here, we show that the temporal modulation of canonical Wnt signaling is sufficient for epicardial induction from 6 different human pluripotent stem cell (hPSC) lines, including a WT1-2A-eGFP knock-in reporter line, under chemically-defined, xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-ß)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells, resulting in a more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo, as determined by morphological and functional assays, including RNA-seq. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies.

18.
Cell Stem Cell ; 18(3): 354-67, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26877223

RESUMEN

Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipotency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy.


Asunto(s)
Proliferación Celular , Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Fibroblastos/metabolismo , Mioblastos Cardíacos/metabolismo , Factores de Transcripción/biosíntesis , Animales , Supervivencia Celular , Fibroblastos/citología , Ratones , Ratones Transgénicos , Mioblastos Cardíacos/citología , Factores de Transcripción/genética
19.
J Cardiovasc Transl Res ; 8(7): 438-48, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26374144

RESUMEN

The aim of this study is to determine the effects of early intravenous (IV) infusion later followed by transendocardial (TE) injection of allogeneic mesenchymal stem cells (MSCs) following myocardial infarction (MI). Twenty-four swine underwent balloon occlusion reperfusion MI and were randomized into 4 groups: IV MSC (or placebo) infusion (post-MI day 2) and TE MSC (or placebo) injection targeting the infarct border with 2D X-ray fluoroscopy fused to 3D magnetic resonance (XFM) co-registration (post-MI day 14). Continuous ECG recording, MRI, and invasive pressure-volume analyses were performed. IV MSC plus TE MSC treated group was superior to other groups for contractility reserve (p = 0.02) and freedom from VT (p = 0.03) but had more lymphocytic foci localized to the peri-infarct region (p = 0.002). No differences were observed in post-MI remodeling parameters. IV followed by XFM targeted TE MSC therapy improves contractility reserve and suppresses VT but does not affect post-MI remodeling and may cause an immune response.


Asunto(s)
Imagen por Resonancia Magnética , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de la radiación , Contracción Miocárdica/fisiología , Infarto del Miocardio/cirugía , Animales , Arritmias Cardíacas/diagnóstico , Separación Celular/métodos , Endocardio , Hemodinámica , Inyecciones/métodos , Inyecciones Intravenosas , Infarto del Miocardio/patología , Distribución Aleatoria , Porcinos
20.
Cardiovasc Eng Technol ; 5(1): 119-131, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24683428

RESUMEN

PURPOSE: Demonstrate a novel manufacturing method to generate extracellular matrix scaffolds from cardiac fibroblasts (CF-ECM) as a therapeutic mesenchymal stem cell-transfer device. MATERIALS AND METHODS: Rat CF were cultured at high-density (~1.6×105/cm2) for 10-14 days. Cell sheets were removed from the culture dish by incubation with EDTA and decellularized with water and peracetic acid. CF-ECM was characterized by mass spectrometry, immunofluorescence and scanning electron microscopy. CF-ECM seeded with human embryonic stem cell derived mesenchymal stromal cells (hEMSCs) were transferred into a mouse myocardial infarction model. 48 hours later, mouse hearts were excised and examined for CF-ECM scaffold retention and cell transfer. RESULTS: CF-ECM scaffolds are composed of fibronectin (82%), collagens type I (13%), type III (3.4%), type V (0.2%), type II (0.1%) elastin (1.3%) and 18 non-structural bioactive molecules. Scaffolds remained intact on the mouse heart for 48 hours without the use of sutures or glue. Identified hEMSCs were distributed from the epicardium to the endocardium. CONCLUSIONS: High density cardiac fibroblast culture can be used to generate CF-ECM scaffolds. CF-ECM scaffolds seeded with hEMSCs can be maintained on the heart without suture or glue. hEMSC are successfully delivered throughout the myocardium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA