Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 10(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34685514

RESUMEN

(1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation.


Asunto(s)
Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Microglía/metabolismo , Animales , Encéfalo/metabolismo , Proliferación Celular/genética , Supervivencia Celular/genética , Fosfatidilinositol 3-Quinasa Clase Ib/genética , AMP Cíclico/metabolismo , Ratones Noqueados , Neurogénesis/fisiología , Especies Reactivas de Oxígeno/metabolismo
2.
Cell Death Dis ; 12(2): 143, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33542216

RESUMEN

MCPH1 is a causal gene for the neurodevelopmental disorder, human primary microcephaly (MCPH1, OMIM251200). Most pathogenic mutations are located in the N-terminal region of the gene, which encodes a BRCT domain, suggesting an important function of this domain in brain size determination. To investigate the specific function of the N-terminal BRCT domain in vivo, we generated a mouse model lacking the N'-BRCT domain of MCPH1 (referred as Mcph1-ΔBR1). These mutant mice are viable, but exhibit reduced brain size, with a thinner cortex due to a reduction of neuroprogenitor populations and premature neurogenic differentiation. Mcph1-ΔBR1 mice (both male and female) are infertile; however, almost all female mutants develop ovary tumours. Mcph1-ΔBR1 MEF cells exhibit a defect in DNA damage response and DNA repair, and show the premature chromosome condensation (PCC) phenotype, a hallmark of MCPH1 patient cells and also Mcph1 knockout cells. In comparison with Mcph1 complete knockout mice, Mcph1-ΔBR1 mice faithfully reproduce all phenotypes, indicating an essential role of the N-terminal BRCT domain for the physiological function of MCPH1 in the control of brain size and gonad development as well as in multiple cellular processes.


Asunto(s)
Encéfalo/fisiología , Proteínas de Ciclo Celular/fisiología , Proteínas del Citoesqueleto/fisiología , Fertilidad/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Femenino , Masculino , Ratones , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA