Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 33(5): 1748-1770, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33561278

RESUMEN

The native diploid tobacco Nicotiana attenuata produces abundant, potent anti-herbivore defense metabolites known as 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) whose glycosylation and malonylation biosynthetic steps are regulated by jasmonate signaling. To characterize the biosynthetic pathway of HGL-DTGs, we conducted a genome-wide analysis of uridine diphosphate glycosyltransferases (UGTs) and identified 107 family-1 UGT members. The transcript levels of three UGTs were highly correlated with the transcript levels two key HGL-DTG biosynthetic genes: geranylgeranyl diphosphate synthase (NaGGPPS) and geranyllinalool synthase (NaGLS). NaGLS's role in HGL-DTG biosynthesis was confirmed by virus-induced gene silencing. Silencing the Uridine diphosphate (UDP)-rhamnosyltransferase gene UGT91T1 demonstrated its role in the rhamnosylation of HGL-DTGs. In vitro enzyme assays revealed that UGT74P3 and UGT74P4 use UDP-glucose for the glucosylation of 17-hydroxygeranyllinalool (17-HGL) to lyciumoside I. Plants with stable silencing of UGT74P3 and UGT74P5 were severely developmentally deformed, pointing to a phytotoxic effect of the aglycone. The application of synthetic 17-HGL and silencing of the UGTs in HGL-DTG-free plants confirmed this phytotoxic effect. Feeding assays with tobacco hornworm (Manduca sexta) larvae revealed the defensive functions of the glucosylation and rhamnosylation steps in HGL-DTG biosynthesis. Glucosylation of 17-HGL is therefore a critical step that contributes to the resulting metabolites' defensive function and solves the autotoxicity problem of this potent chemical defense.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Diterpenos/metabolismo , Glicósidos/metabolismo , Nicotiana/metabolismo , Monoterpenos Acíclicos/química , Animales , Vías Biosintéticas , Silenciador del Gen , Glicosilación , Glicosiltransferasas/metabolismo , Herbivoria , Larva/fisiología , Manduca/fisiología , Metabolómica , Necrosis , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo
2.
Plant Physiol ; 188(1): 167-190, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34718797

RESUMEN

Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.


Asunto(s)
Antifúngicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a la Enfermedad/fisiología , Flavonoides/metabolismo , Fusarium/patogenicidad , Metiltransferasas/metabolismo , Zea mays/metabolismo , Variación Genética , Genotipo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Zea mays/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-35471141

RESUMEN

The genus 'Candidatus Phytoplasma' was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus 'Ca. Phytoplasma', the proposed guidelines were revised and clarified to accommodate those 'Ca. Phytoplasma' species strains sharing >98.65 % sequence identity of their full or nearly full 16S rRNA gene sequences, obtained with at least twofold coverage of the sequence, compared with those of the reference strain of such species. Strains sharing <98.65 % sequence identity with the reference strain but >98.65 % with other strain(s) within the same 'Ca. Phytoplasma' species should be considered related strains to that 'Ca. Phytoplasma' species. The guidelines herein, keep the original published reference strains. However, to improve 'Ca. Phytoplasma' species assignment, complementary strains are suggested as an alternative to the reference strains. This will be implemented when only a partial 16S rRNA gene and/or a few other genes have been sequenced, or the strain is no longer available for further molecular characterization. Lists of 'Ca. Phytoplasma' species and alternative reference strains described are reported. For new 'Ca. Phytoplasma' species that will be assigned with identity ≥98.65 % of their 16S rRNA gene sequences, a threshold of 95 % genome-wide average nucleotide identity is suggested. When the whole genome sequences are unavailable, two among conserved housekeeping genes could be used. There are 49 officially published 'Candidatus Phytoplasma' species, including 'Ca. P. cocostanzaniae' and 'Ca. P. palmae' described in this manuscript.


Asunto(s)
Phytoplasma , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Filogenia , Phytoplasma/genética , Enfermedades de las Plantas/microbiología , Plantas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923591

RESUMEN

Flower colour is an important trait for plants to attract pollinators and ensure their reproductive success. Among yellow flower pigments, the nudicaulins in Papaver nudicaule L. (Iceland poppy) are unique due to their rarity and unparalleled flavoalkaloid structure. Nudicaulins are derived from pelargonidin glycoside and indole, products of the flavonoid and indole/tryptophan biosynthetic pathway, respectively. To gain insight into the molecular and chemical basis of nudicaulin biosynthesis, we combined transcriptome, differential gel electrophoresis (DIGE)-based proteome, and ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS)-based metabolome data of P. nudicaule petals with chemical investigations. We identified candidate genes and proteins for all biosynthetic steps as well as some key metabolites across five stages of petal development. Candidate genes of amino acid biosynthesis showed a relatively stable expression throughout petal development, whereas most candidate genes of flavonoid biosynthesis showed increasing expression during development followed by downregulation in the final stage. Notably, gene candidates of indole-3-glycerol-phosphate lyase (IGL), sharing characteristic sequence motifs with known plant IGL genes, were co-expressed with flavonoid biosynthesis genes, and are probably providing free indole. The fusion of indole with pelargonidin glycosides was retraced synthetically and promoted by high precursor concentrations, an excess of indole, and a specific glycosylation pattern of pelargonidin. Thus, nudicaulin biosynthesis combines the enzymatic steps of two different pathways with a spontaneous fusion of indole and pelargonidin glycoside under precisely tuned reaction conditions.


Asunto(s)
Flavonoides/biosíntesis , Alcaloides Indólicos/metabolismo , Papaveraceae/metabolismo , Pigmentos Biológicos/biosíntesis , Proteínas de Plantas/metabolismo , Flavonoides/genética , Flores/química , Flores/genética , Flores/metabolismo , Metaboloma , Papaveraceae/química , Papaveraceae/genética , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Proteoma , Transcriptoma
5.
Pharm Biol ; 59(1): 575-583, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34043935

RESUMEN

CONTEXT: Ircinia mutans Wilson (Irciniidae) is a sponge with antimicrobial and cytotoxic constituents. OBJECTIVE: Our objective was to characterise the cytotoxic constituents of two seasonal collections of I. mutans. MATERIALS AND METHODS: The sponges were extracted in methanol-dichloromethane and their constituents were purified and characterised using column chromatography, GC-MS, 1 D and 2 D NMR. Anti-proliferative activities of the compounds, were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay (0.25-100 µg/mL, 72 h) against leukaemia (MOLT-4), breast (MCF-7) and colon cancer (HT-29) human cells. RESULTS: Three furanosesquiterpoids; furodysin (1), ent-furodysinin (2) and furoircin (3) and ten sterols were characterised in I. mutans, for the first time. Cholesterol (4), cholesta-5, 7-dien-3ß-ol (5) and ergosterol (6) were determined in the sponge from the winter collections, while cholesta-5, 22-dien-3ß-ol (7), 24-methyldesmosterol (8), campesterol (9), stigmasterol (10), γ-ergostenol (11), chondrillasterol (12) and γ-sitosterol (13) were detected in the summer samples. The steroids from the winter collection exhibited cytotoxic activity with IC50 values of 13.0 ± 0.9, 11.1 ± 1.7 and 1.1 ± 0.4 µg/mL, against the mentioned cancer cell lines, respectively, while those from the summer sample, showed greater activity, IC50 = 1.1 ± 0.2 µg/mL against MOLT-4. The purified steroids showed potent MOLT-4 cytotoxic activity, IC50 values = 2.3-7.8 µg/mL. DISCUSSION AND CONCLUSION: The present study suggests that I. mutans is a rich source of cytotoxic steroids, and introduces 3 as new natural product. Considering the high cytotoxic activity of the steroids, these structures could be candidates for anticancer drug development in future research.


Asunto(s)
Antineoplásicos/farmacología , Poríferos/química , Sesquiterpenos/farmacología , Esteroides/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/aislamiento & purificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Femenino , Células HT29 , Humanos , Concentración 50 Inhibidora , Leucemia/tratamiento farmacológico , Leucemia/patología , Células MCF-7 , Sesquiterpenos/administración & dosificación , Sesquiterpenos/aislamiento & purificación , Esteroides/administración & dosificación , Esteroides/aislamiento & purificación
6.
BMC Microbiol ; 20(1): 74, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234008

RESUMEN

BACKGROUND: 'Candidatus Phytoplasma ulmi' is the agent associated with elm yellows and has been categorised in the European Union as a quarantine pathogen. For central and northern European countries, information on the occurrence and distribution of the pathogen and its impact on elms is scarce, so a survey of native elm trees has been conducted in Germany. RESULTS: About 6500 samples from Ulmus minor, Ulmus laevis and Ulmus glabra, were collected nationwide. Phytoplasma detection was performed by applying a universal 16Sr DNA-based quantitative PCR (qPCR) assay and a novel 'Ca. P. ulmi' specific qPCR assay targeting the 16S-23S spacer region. Both assays revealed that 28% of the samples were infected by 'Ca. P. ulmi', but infection rates of the elm species and regional incidences differed. The phytoplasma presence in the trees was not correlated to disease-specific symptoms. The survey identified a regional disparity of infection which was high in east, south and central Germany, whereas only a few infected sites were found in the western and northern parts of the country. Monitoring the seasonal titre of 'Ca. P. ulmi' in an infected tree by qPCR revealed a high colonisation in all parts of the tree throughout the year. CONCLUSIONS: 'Ca. P. ulmi' is widely present in elms in Germany. The rare occurrence of symptoms indicates either a high degree of tolerance in elm populations or a low virulence of pathogen strains enabling high infection rates in a long-living host.


Asunto(s)
Phytoplasma/clasificación , Enfermedades de las Plantas/estadística & datos numéricos , ARN Ribosómico 16S/genética , Ulmus/microbiología , ADN Bacteriano/genética , ADN Ribosómico/genética , Alemania/epidemiología , Incidencia , Filogenia , Phytoplasma/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año
7.
Bioorg Chem ; 104: 104297, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011536

RESUMEN

Two polyhydroxylated oleanane and seven ursane triterpenoids were isolated from aerial parts of Salvia grossheimii. The chemical structures of the undescribed triterpenoids (1-6) were characterized using 1 and 2 D NMR and ESI-MS spectral data as; 2α, 3ß, 11α -trihydroxy-olean-12- ene (1), 2α, 3ß, 11α-trihydroxy-olean-18-ene (2), 2α- acetoxy-urs-12-ene-3ß, 11α, 20ß-triol (3), 3-keto-urs-12-ene-1ß, 11α, 20ß -triol (4), 2α, 3ß-diacetoxy-urs-12-ene-1ß, 11α, 20ß -triol (5), and 3ß-acetoxy-urs-12-ene-1ß, 11α, 20ß -triol (6). All compounds were evaluated for the in vitro α-glucosidase inhibitory and cytotoxic activities against MCF-7 human cancer cell line. Compounds 1, 2, 4, and 6 showed in vitro α-glucosidase inhibitory activity with IC50 = 43.6-198.4 µM, which were more potent than the antidiabetic medicine, acarbose. The remaining compounds; 3, and 7-9 showed potent cytotoxic activity (IC50 = 6.2-31.9 µM) against the cancerous cell line, while the potent α-glucosidase inhibitors were inactive. Molecular docking analysis and kinetic studies were applied to investigate the structure activity relationships and mechanisms of the human and Saccharomyces cerevisiae α-glucosidase inhibitory of the purified compounds. Comparing the high cytotoxicity and α-glucosidase inhibitory of the oleanane and ursane type triterpenoids suggest them as potential lead compounds for further research in anticancer and antidiabetic research.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Ácido Oleanólico/análogos & derivados , Salvia/química , Triterpenos/farmacología , Células A549 , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Cinética , Células MCF-7 , Estructura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/aislamiento & purificación , alfa-Glucosidasas/metabolismo
8.
Plant J ; 94(3): 469-484, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29438577

RESUMEN

While the characterization of the biosynthetic pathway of monoterpene indole alkaloids (MIAs) in leaves of Catharanthus roseus is now reaching completion, only two enzymes from the root counterpart dedicated to tabersonine metabolism have been identified to date, namely tabersonine 19-hydroxylase (T19H) and minovincine 19-O-acetyltransferase (MAT). Albeit the recombinant MAT catalyzes MIA acetylation at low efficiency in vitro, we demonstrated that MAT was inactive when expressed in yeast and in planta, suggesting an alternative function for this enzyme. Therefore, through transcriptomic analysis of periwinkle adventitious roots, several other BAHD acyltransferase candidates were identified based on the correlation of their expression profile with T19H and found to localize in small genomic clusters. Only one, named tabersonine derivative 19-O-acetyltransferase (TAT) was able to acetylate the 19-hydroxytabersonine derivatives from roots, such as minovincinine and hörhammericine, following expression in yeast. Kinetic studies also showed that the recombinant TAT was specific for root MIAs and displayed an up to 200-fold higher catalytic efficiency than MAT. In addition, gene expression analysis, protein subcellular localization and heterologous expression in Nicotiana benthamiana were in agreement with the prominent role of TAT in acetylation of root-specific MIAs, thereby redefining the molecular determinants of the root MIA biosynthetic pathway. Finally, identification of TAT provided a convenient tool for metabolic engineering of MIAs in yeast enabling efficiently mixing different biosynthetic modules spatially separated in the whole plant. This combinatorial synthesis associating several enzymes from Catharanthus roseus resulted in the conversion of tabersonine in tailor-made MIAs bearing both leaf and root-type decorations.


Asunto(s)
Acetiltransferasas/metabolismo , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Quinolinas/metabolismo , Acetilación , Acetiltransferasas/genética , Catharanthus/enzimología , Catharanthus/genética , Redes y Vías Metabólicas , Microorganismos Modificados Genéticamente , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/enzimología
9.
Plant Physiol ; 176(3): 2496-2514, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29371249

RESUMEN

Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.


Asunto(s)
Arabidopsis/microbiología , Basidiomycota/fisiología , Celulosa/metabolismo , Exorribonucleasas/metabolismo , Simbiosis/fisiología , Triosas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Exorribonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/metabolismo , Plantones/microbiología , Transducción de Señal
10.
Plant Cell ; 28(7): 1682-700, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27317675

RESUMEN

Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxygenase (BX13) that catalyzes the conversion of DIMBOA-Glc into a new benzoxazinoid intermediate (TRIMBOA-Glc) by an uncommon reaction involving a hydroxylation and a likely ortho-rearrangement of a methoxy group. TRIMBOA-Glc is then converted to DIM2BOA-Glc by a previously described O-methyltransferase BX7. Furthermore, we identified an O-methyltransferase (BX14) that converts DIM2BOA-Glc to HDM2BOA-Glc. The role of these enzymes in vivo was demonstrated by characterizing recombinant inbred lines, including Oh43, which has a point mutation in the start codon of Bx13 and lacks both DIM2BOA-Glc and HDM2BOA-Glc, and Il14H, which has an inactive Bx14 allele and lacks HDM2BOA-Glc in leaves. Experiments with near-isogenic maize lines derived from crosses between B73 and Oh43 revealed that the absence of DIM2BOA-Glc and HDM2BOA-Glc does not alter the constitutive accumulation or deglucosylation of other benzoxazinoids. The growth of various chewing herbivores was not significantly affected by the absence of BX13-dependent metabolites, while aphid performance increased, suggesting that DIM2BOA-Glc and/or HDM2BOA-Glc provide specific protection against phloem feeding insects.


Asunto(s)
Benzoxazinas/metabolismo , Zea mays/metabolismo , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Zea mays/genética
11.
Plant Cell ; 28(3): 804-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26941091

RESUMEN

Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms.


Asunto(s)
Farnesiltransferasa/metabolismo , Mentha/enzimología , Spodoptera/fisiología , Terpenos/metabolismo , Secuencia de Aminoácidos , Animales , Eritritol/análogos & derivados , Eritritol/metabolismo , Farnesiltransferasa/genética , Mentha/química , Mentha/genética , Especificidad de Órganos , Filogenia , Plantones/química , Plantones/enzimología , Plantones/genética , Alineación de Secuencia , Fosfatos de Azúcar/metabolismo , Terpenos/química , Tricomas/química , Tricomas/enzimología , Tricomas/genética
12.
Environ Sci Technol ; 53(12): 6869-6876, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117528

RESUMEN

In marine systems, the loss of nitrogen caused by denitrification in oxygen-deficient zones is balanced by nitrogen fixation mediated by cyanobacteria, which may form extensive blooms in surface waters. In this study, by determining the concentration ratio of nitrogen (N2) and argon (Ar) in air equilibrated with surface water, we were able to detect changes in the N2 concentration attributable to N2 fixation. For this purpose, surface water was pumped continuously into a spray-type equilibrator while the air in the equilibrator's headspace was analyzed by mass spectrometry. After laboratory tests and model analysis to evaluate the sensitivity of our N2/Ar approach, feasibility studies were conducted in the central Baltic Sea in the summer of 2015 during the development of a cyanobacterial bloom. Our results showed that N2 deficits accumulated during periods of low wind and increasing surface water temperatures. A comparison of our results with the N2 deficits calculated from changes in the partial pressure of carbon dioxide in surface water indicated a similar trend. By demonstrating the ability of the N2/Ar approach to resolve N2 deficits in surface water caused by N2 fixation, our study contributes to assessments of the N2 fixation efficiency of cyanobacterial blooms.


Asunto(s)
Cianobacterias , Fijación del Nitrógeno , Argón , Países Bálticos , Nitrógeno
13.
Plant Foods Hum Nutr ; 74(2): 223-224, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30887272

RESUMEN

Duckweeds (Lemnaceae) possess good qualitative and quantitative profiles of nutritional components for its use as human food. However, no studies have been conducted on the probable presence or absence of any adverse effects. The extracts from seven duckweed species (Spirodela polyrhiza, Landoltia punctata, Lemna gibba, Lemna minor, Wolffiella hyalina, Wolffia globosa, and Wolffia microscopica) covering all five genera of the plant family were herewith tested for cytotoxic effects on the human cell lines HUVEC, K-562, and HeLa and for anti-proliferative activity on HUVEC and K-562 cell lines. From these assays, it is evident that duckweeds do not possess any detectable anti-proliferative or cytotoxic effects, thus, the high nutritional value is not diminished by such detrimental factors. The present result is a first step to exclude any harmful effects of highly nutritious duckweed for human.


Asunto(s)
Araceae/química , Valor Nutritivo , Extractos Vegetales/efectos adversos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos
14.
Chembiochem ; 19(14): 1553-1562, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29696753

RESUMEN

Despite increasing evidence for biosynthetic connections between flower pigments and volatile compounds, examples of such relationships in polymorphic plant species remains limited. Herein, color-scent associations in flowers from Papaver nudicaule (Papaveraceae) have been investigated. The spectral reflectance and scent composition of flowers of four color cultivars was determined. We found that pigments and volatiles occur in specific combinations in flowers of P. nudicaule. The presence of indole in the bouquets is strongly associated with the occurrence of yellow pigments called nudicaulins, for which indole is one of the final biosynthetic precursors. Whereas yellow flowers emit an excess of indole, orange flowers consume it during nudicaulin production and lack the substance in their bouquet. By using the honeybee, Apis mellifera, evaluations were made on how color and scent affect the discrimination of these flowers by pollinators. Honeybees were able to discriminate artificial odor mixtures resembling those of the natural flower odors. Bees trained with stimuli combining colors and odors showed an improved discrimination performance. The results indicate that the indole moiety of nudicaulins and emitted indole might be products of the same biochemical pathway. We propose that conserved pathways account for the evolution of color-scent associations in P. nudicaule and that these associations positively affect flower constancy of pollinators.

15.
Chembiochem ; 19(9): 940-948, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29424954

RESUMEN

Plant monoterpene indole alkaloids, a large class of natural products, derive from the biosynthetic intermediate strictosidine aglycone. Strictosidine aglycone, which can exist as a variety of isomers, can be reduced to form numerous different structures. We have discovered a short-chain alcohol dehydrogenase (SDR) from plant producers of monoterpene indole alkaloids (Catharanthus roseus and Rauvolfia serpentina) that reduce strictosidine aglycone and produce an alkaloid that does not correspond to any previously reported compound. Here we report the structural characterization of this product, which we have named vitrosamine, as well as the crystal structure of the SDR. This discovery highlights the structural versatility of the strictosidine aglycone biosynthetic intermediate and expands the range of enzymatic reactions that SDRs can catalyse. This discovery further highlights how a sequence-based gene mining discovery approach in plants can reveal cryptic chemistry that would not be uncovered by classical natural product chemistry approaches.


Asunto(s)
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Deshidrogenasas-Reductasas de Cadena Corta/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Catharanthus/química , Catharanthus/enzimología , Cristalografía por Rayos X , Alcaloides Indólicos/química , Modelos Moleculares , Monoterpenos/química , Proteínas de Plantas/química , Conformación Proteica , Deshidrogenasas-Reductasas de Cadena Corta/química
16.
Plant Physiol ; 175(2): 641-651, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28794260

RESUMEN

Acetophenones are phenolic compounds involved in the resistance of white spruce (Picea glauca) against spruce budworm (Choristoneura fumiferiana), a major forest pest in North America. The acetophenones pungenol and piceol commonly accumulate in spruce foliage in the form of the corresponding glycosides, pungenin and picein. These glycosides appear to be inactive against the insect but can be cleaved by a spruce ß-glucosidase, PgßGLU-1, which releases the active aglycons. The reverse glycosylation reaction was hypothesized to involve a family 1 UDP-sugar dependent glycosyltransferase (UGT) to facilitate acetophenone accumulation in the plant. Metabolite and transcriptome profiling over a developmental time course of white spruce bud burst and shoot growth revealed two UGTs, PgUGT5 and PgUGT5b, that glycosylate pungenol. Recombinant PgUGT5b enzyme produced mostly pungenin, while PgUGT5 produced mostly isopungenin. Both UGTs also were active in vitro on select flavonoids. However, the context of transcript and metabolite accumulation did not support a biological role in flavonoid metabolism but correlated with the formation of pungenin in growing shoots. Transcript levels of PgUGT5b were higher than those of PgUGT5 in needles across different genotypes of white spruce. These results support a role of PgUGT5b in the biosynthesis of the glycosylated acetophenone pungenin in white spruce.


Asunto(s)
Acetofenonas/metabolismo , Glicosiltransferasas/metabolismo , Insectos/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Tracheophyta/enzimología , Animales , Glucósidos/metabolismo , Glicósidos/metabolismo , Glicosiltransferasas/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tracheophyta/genética , Tracheophyta/inmunología , Tracheophyta/parasitología , Azúcares de Uridina Difosfato/metabolismo
17.
Plant Cell ; 27(10): 2972-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26475865

RESUMEN

The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests.


Asunto(s)
Arabidopsis/enzimología , Ciclohexanoles/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/enzimología , Insecticidas/metabolismo , Monoterpenos/metabolismo , Compuestos de Tritilo/metabolismo , Monoterpenos Acíclicos , Alcoholes/química , Alcoholes/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclohexanoles/química , Sistema Enzimático del Citocromo P-450/genética , Flores/genética , Flores/inmunología , Genes Reporteros , Insectos/fisiología , Insecticidas/química , Monoterpenos/química , Oxidación-Reducción , Estereoisomerismo , Compuestos de Tritilo/química
18.
J Nat Prod ; 81(4): 879-884, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29509420

RESUMEN

Phenylbenzoisochromenone glucosides (oxa-phenylphenalenone glucosides) occurring in some phenylphenalenone-producing plants of the Haemodoraceae undergo conversion to phenylbenzoisoquinolindiones (aza-phenylphenalenones) in extracts of Xiphidium caeruleum. Precursor-directed biosynthetic experiments were used to generate a series of new phenylbenzoisoquinolindiones from native phenylbenzoisochromenone glucosides and external amines, amino acids, and peptides. Intermediates of the conversion were isolated, incubated with cell-free extracts, and exposed to reactions under oxidative or inert conditions, respectively, to elucidate the entire pathway from phenylbenzoisochromenones to phenylbenzoisoquinolindiones. An intermediate in this pathway, a reactive hydroxylactone/aldehyde, readily binds not only to amines in vitro but may also bind to the N-terminus of biogenic peptides and proteins of herbivores and pathogens in vivo. The deactivation of biogenic amino compounds by N-terminal modification is discussed as the key reaction of a novel phenylphenalenone-based plant defense mechanism. According to these data, the ecological function of phenylphenalenone-type compounds in the Haemodoraceae, subfamily Haemodoroideae, has been substantiated.


Asunto(s)
Alcaloides/química , Fenalenos/química , Plantas/química , Aldehídos/química , Aminas/química , Aminoácidos/química , Glucósidos/química , Lactonas/química , Magnoliopsida/química , Péptidos/química , Extractos Vegetales/química
19.
J Chem Ecol ; 44(5): 497-509, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29549572

RESUMEN

Salicortin is a phenolic glucoside produced in Salicaceae as a chemical defense against herbivory. The specialist lepidopteran herbivorous larvae of Cerura vinula are able to overcome this defense. We examined the main frass constituents of C. vinula fed on Populus nigra leaves, and identified 11 quinic acid derivatives with benzoate and/or salicylate substitution. We asked whether the compounds are a result of salicortin breakdown and sought answers by carrying out feeding experiments with highly 13C-enriched salicortin. Using HRMS and NMR analyses, we were able to confirm that salicortin metabolism in C. vinula proceeds through deglucosylation and ester hydrolysis, after which saligenin is oxidatively transformed into salicylic acid and, eventually, conjugated to quinic acid. To the best of our knowledge, this is the first report of a detoxification pathway based on conjugation with quinic acid.


Asunto(s)
Glucósidos/metabolismo , Herbivoria , Lepidópteros/fisiología , Populus/fisiología , Ácido Quínico/metabolismo , Acilación , Animales , Glucósidos/análisis , Hidrólisis , Larva/química , Larva/fisiología , Lepidópteros/química , Oxidación-Reducción , Hojas de la Planta/química , Hojas de la Planta/fisiología , Populus/química , Ácido Quínico/análisis
20.
Bioorg Chem ; 77: 651-659, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29502026

RESUMEN

Phytochemical investigation of the dichloromethane extract of the dried aerial parts of Corydalis rupestris (Papaveraceae) resulted in the identification of four new isoquinoline alkaloids rupestrines A-D and one known isoquinoline alkaloid, namely, stylopine. The structures of these compounds were characterized by extensive spectroscopic methods including 1D- (1H and 13C) and 2D NMR experiments (COSY, HSQC, HMBC, and NOESY) as well as HRESIMS analyses. In addition, the absolute configurations of rupestrines A-D were determined using modified Mosher's method. Cytotoxic effects of alkaloids and their interaction with albumin were also investigated in this study.


Asunto(s)
Alcaloides/química , Corydalis/química , Isoquinolinas/química , Componentes Aéreos de las Plantas/química , Alcaloides/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA