Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 144(5): 054105, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26851906

RESUMEN

Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e., of the basis set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes.

2.
J Chem Theory Comput ; 15(4): 2206-2220, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30802406

RESUMEN

In this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework. In particular, we highlight the use of what we have defined as a complete active space-external space gap describing the basis splitting between the complete active space and the external part generalizing the concept of a HOMO-LUMO gap. Furthermore, the behavior of the energy error for an optimal basis splitting, i.e., an active space choice minimizing the density matrix renormalization group-tailored coupled-cluster singles doubles error, is discussed. We show numerical investigations on the robustness with respect to the bond dimensions of the single orbital entropy and the mutual information, which are quantities that are used to choose a complete active space. Moreover, the dependence of the ground-state energy error on the complete active space has been analyzed numerically in order to find an optimal split between the complete active space and external space by minimizing the density matrix renormalization group-tailored coupled-cluster error.

3.
J Chem Phys ; 129(1): 014109, 2008 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-18624472

RESUMEN

Daubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient and accurate method for density functional electronic structure calculations. An implementation of this method is available in the ABINIT free software package. This code shows high systematic convergence properties, very good performances, and an excellent efficiency for parallel calculations.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37025363
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA