Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2322072121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683991

RESUMEN

Previous models suggest that indirect reciprocity (reputation) can stabilize large-scale human cooperation [K. Panchanathan, R. Boyd, Nature 432, 499-502 (2004)]. The logic behind these models and experiments [J. Gross et al., Sci. Adv. 9, eadd8289 (2023) and O. P. Hauser, A. Hendriks, D. G. Rand, M. A. Nowak, Sci. Rep. 6, 36079 (2016)] is that a strategy in which individuals conditionally aid others based on their reputation for engaging in costly cooperative behavior serves as a punishment that incentivizes large-scale cooperation without the second-order free-rider problem. However, these models and experiments fail to account for individuals belonging to multiple groups with reputations that can be in conflict. Here, we extend these models such that individuals belong to a smaller, "local" group embedded within a larger, "global" group. This introduces competing strategies for conditionally aiding others based on their cooperative behavior in the local or global group. Our analyses reveal that the reputation for cooperation in the smaller local group can undermine cooperation in the larger global group, even when the theoretical maximum payoffs are higher in the larger global group. This model reveals that indirect reciprocity alone is insufficient for stabilizing large-scale human cooperation because cooperation at one scale can be considered defection at another. These results deepen the puzzle of large-scale human cooperation.


Asunto(s)
Conducta Cooperativa , Humanos , Teoría del Juego , Relaciones Interpersonales , Modelos Psicológicos
2.
J Neurosci ; 42(14): 3025-3036, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35181595

RESUMEN

Hilar mossy cells regulate network function in the hippocampus through both direct excitation and di-synaptic inhibition of dentate granule cells (DGCs). Substantial mossy cell loss accompanies hippocampal circuit changes in epilepsy. We examined the contribution of surviving mossy cells to network activity in the reorganized dentate gyrus after pilocarpine-induced status epilepticus (SE). To examine functional circuit changes, we optogenetically stimulated mossy cells in acute hippocampal slices from male mice. In control mice, activation of mossy cells produced monosynaptic excitatory and di-synaptic GABAergic currents in DGCs. In pilocarpine-treated mice, mossy cell density and excitation of DGCs were reduced in parallel, with only a minimal reduction in feedforward inhibition, enhancing the inhibition/excitation ratio. Surprisingly, mossy cell-driven excitation of parvalbumin-positive (PV+) basket cells, primary mediators of feed-forward inhibition, was maintained. Our results suggest that mossy cell outputs reorganize following seizures, increasing their net inhibitory effect in the hippocampus.SIGNIFICANCE STATEMENT Hilar mossy cell loss in epilepsy is associated with hippocampal hyperexcitability, potentially as a result of disrupted dentate microcircuit function. We used transgenic mice, translational mouse modeling, viral vectors, and optogenetics to selectively examine functional changes to mossy cell outputs following status epilepticus (SE). Interestingly, the outputs of surviving mossy cells exhibited adaptive plasticity onto target parvalbumin-positive (PV+) interneurons, resulting in a relative increase in their inhibitory control of dentate granule cells (DGCs). Our findings suggest that residual mossy cell outputs can reorganize in a homeostatic manner, which may provide clues for therapeutic targeting of this microcircuit.


Asunto(s)
Fibras Musgosas del Hipocampo , Estado Epiléptico , Adaptación Fisiológica , Animales , Giro Dentado/fisiología , Masculino , Ratones , Fibras Musgosas del Hipocampo/fisiología , Parvalbúminas , Pilocarpina/toxicidad , Estado Epiléptico/inducido químicamente
3.
J Physiol ; 600(1): 111-122, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34783012

RESUMEN

α2δ proteins (CACNA2D1-4) are required for normal neurological function and contribute to membrane trafficking of voltage-gated calcium channels, through which calcium entry initiates numerous physiological processes. However, it remains unclear how α2δ proteins influence calcium-mediated signalling to control neuronal output. Using whole-cell recordings of mouse Purkinje cells, we show that α2δ-2 is required for functional coupling of postsynaptic voltage-dependent calcium entry with calcium-dependent effector mechanisms controlling two different outputs, depolarization-induced suppression of excitation and spike afterhyperpolarization. Our findings indicate an important role for α2δ-2 proteins in regulating functional postsynaptic calcium channel coupling in neurons, providing new context for understanding the effects of α2δ mutations on neuronal circuit function and presenting additional potential avenues to manipulate α2δ-mediated signalling for therapeutic gain. KEY POINTS: Calcium influx, via voltage-dependent calcium channels, drives numerous neuronal signalling processes with precision achieved in part by tight coupling between calcium entry and calcium-dependent effectors. α2δ proteins are important for neurological function and contribute to calcium channel membrane trafficking, although how α2δ proteins influence postsynaptic calcium-dependent signalling is largely unexplored. Here it is shown that loss of α2δ-2 proteins disrupts functional calcium coupling to two different postsynaptic calcium-dependent signals in mouse Purkinje cell neurons, retrograde endocannabinoid signalling and the action potential afterhyperpolarization. The findings provide new insights into the control of calcium coupling as well as new roles for α2δ-2 proteins in neurons.


Asunto(s)
Canales de Calcio , Células de Purkinje , Animales , Señalización del Calcio , Ratones , Neuronas , Técnicas de Placa-Clamp
5.
Proc Natl Acad Sci U S A ; 116(22): 10994-10999, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085654

RESUMEN

In temporal lobe epilepsy, sprouting of hippocampal mossy fiber axons onto dentate granule cell dendrites creates a recurrent excitatory network. However, unlike mossy fibers projecting to CA3, sprouted mossy fiber synapses depress upon repetitive activation. Thus, despite their proximal location, relatively large presynaptic terminals, and ability to excite target neurons, the impact of sprouted mossy fiber synapses on hippocampal hyperexcitability is unclear. We find that despite their short-term depression, single episodes of sprouted mossy fiber activation in hippocampal slices initiated bursts of recurrent polysynaptic excitation. Consistent with a contribution to network hyperexcitability, optogenetic activation of sprouted mossy fibers reliably triggered action potential firing in postsynaptic dentate granule cells after single light pulses. This pattern resulted in a shift in network recruitment dynamics to an "early detonation" mode and an increased probability of release compared with mossy fiber synapses in CA3. A lack of tonic adenosine-mediated inhibition contributed to the higher probability of glutamate release, thus facilitating reverberant circuit activity.


Asunto(s)
Giro Dentado/fisiopatología , Epilepsia/fisiopatología , Fibras Musgosas del Hipocampo , Adenosina/metabolismo , Adenosina/farmacología , Animales , Región CA3 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/metabolismo , Fibras Musgosas del Hipocampo/fisiopatología , Optogenética , Sinapsis/metabolismo
6.
J Neurosci ; 40(12): 2403-2415, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32086258

RESUMEN

α2δ proteins (Cacna2d1-4) are auxiliary subunits of voltage-dependent calcium channels that also drive synapse formation and maturation. Because cerebellar Purkinje cells (PCs) predominantly, if not exclusively, express one isoform of this family, α2δ-2 (Cacna2d2), we used PCs as a model system to examine roles of α2δ in excitatory synaptic function in male and female Cacna2d2 knock-out (KO) mice. Whole-cell recordings of PCs from acute cerebellar slices revealed altered climbing fiber (CF)-evoked complex spike generation, as well as increased amplitude and faster decay of CF-evoked EPSCs. CF terminals in the KO were localized more proximally on PC dendrites, as indicated by VGLUT2+ immunoreactive puncta, and computational modeling demonstrated that the increased EPSC amplitude can be partly attributed to the more proximal location of CF terminals. In addition, CFs in KO mice exhibited increased multivesicular transmission, corresponding to greater sustained responses during repetitive stimulation, despite a reduction in the measured probability of release. Electron microscopy demonstrated that mutant CF terminals had twice as many vesicle release sites, providing a morphologic explanation for the enhanced glutamate release. Though KO CFs evoked larger amplitude EPSCs, the charge transfer was the same as wild-type as a result of increased glutamate reuptake, producing faster decay kinetics. Together, the larger, faster EPSCs in the KO explain the altered complex spike responses, which degrade information transfer from PCs and likely contribute to ataxia in Cacna2d2 KO mice. Our results also illustrate the multidimensional synaptic roles of α2δ proteins.SIGNIFICANCE STATEMENT α2δ proteins (Cacna2d1-4) regulate synaptic transmission and synaptogenesis, but coexpression of multiple α2δ isoforms has obscured a clear understanding of how various α2δ proteins control synaptic function. We focused on roles of the α2δ-2 protein (Cacna2d2), the deletion of which causes cerebellar ataxia and epilepsy in mice and humans. Because cerebellar Purkinje cells (PCs) only express this single isoform, we studied excitatory climbing fiber synaptic function onto PCs in Cacna2d2 KO mice. Using optical and electrophysiological analysis, we provide a detailed description of the changes in PCs lacking α2δ-2, and provide a comprehensive mechanistic explanation for how functional synaptic phenotypes contribute to the altered cerebellar output.


Asunto(s)
Canales de Calcio/fisiología , Cerebelo/fisiología , Fibras Nerviosas/fisiología , Células de Purkinje/fisiología , Sinapsis/fisiología , Animales , Canales de Calcio Tipo L , Cerebelo/citología , Simulación por Computador , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Neurológicos , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura
7.
J Neurosci ; 37(23): 5722-5735, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28495975

RESUMEN

Epileptic seizures potently modulate hippocampal adult neurogenesis, and adult-born dentate granule cells contribute to the pathologic retrograde sprouting of mossy fiber axons, both hallmarks of temporal lobe epilepsy. The characteristics of these sprouted synapses, however, have been largely unexplored, and the specific contribution of adult-born granule cells to functional mossy fiber sprouting is unknown, primarily due to technical barriers in isolating sprouted mossy fiber synapses for analysis. Here, we used DcxCreERT2 transgenic mice to permanently pulse-label age-defined cohorts of granule cells born either before or after pilocarpine-induced status epilepticus (SE). Using optogenetics, we demonstrate that adult-born granule cells born before SE form functional recurrent monosynaptic excitatory connections with other granule cells. Surprisingly, however, although healthy mossy fiber synapses in CA3 are well characterized "detonator" synapses that potently drive postsynaptic cell firing through their profound frequency-dependent facilitation, sprouted mossy fiber synapses from adult-born cells exhibited profound frequency-dependent depression, despite possessing some of the morphological hallmarks of mossy fiber terminals. Mature granule cells also contributed to functional mossy fiber sprouting, but exhibited less synaptic depression. Interestingly, granule cells born shortly after SE did not form functional excitatory synapses, despite robust sprouting. Our results suggest that, although sprouted mossy fibers form recurrent excitatory circuits with some of the morphological characteristics of typical mossy fiber terminals, the functional characteristics of sprouted synapses would limit the contribution of adult-born granule cells to hippocampal hyperexcitability in the epileptic hippocampus.SIGNIFICANCE STATEMENT In the hippocampal dentate gyrus, seizures drive retrograde sprouting of granule cell mossy fiber axons. We directly activated sprouted mossy fiber synapses from adult-born granule cells to study their synaptic properties. We reveal that sprouted synapses from adult-born granule cells have a diminished ability to sustain recurrent excitation in the epileptic hippocampus, which raises questions about the role of sprouting and adult neurogenesis in sustaining seizure-like activity.


Asunto(s)
Fibras Musgosas del Hipocampo/fisiopatología , Inhibición Neural , Neuronas , Convulsiones/fisiopatología , Sinapsis , Transmisión Sináptica , Animales , Masculino , Ratones , Ratones Transgénicos , Neurogénesis
8.
Anesthesiology ; 129(2): 278-295, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29734230

RESUMEN

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-D-aspartate-type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice. METHODS: Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery. RESULTS: Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice. CONCLUSIONS: Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine administration after traumatic brain injury in mice. Future studies are needed to determine generalizability and mechanism.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Hipocampo/efectos de los fármacos , Ketamina/uso terapéutico , Aprendizaje por Laberinto/efectos de los fármacos , Animales , Lesiones Traumáticas del Encéfalo/patología , Proliferación Celular/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Hipocampo/patología , Hipocampo/fisiología , Ketamina/farmacología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología
9.
J Neurosci ; 33(11): 4754-67, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23486947

RESUMEN

Neural plasticity following brain injury illustrates the potential for regeneration in the central nervous system. Lesioning of the perforant path, which innervates the outer two-thirds of the molecular layer of the dentate gyrus, was one of the first models to demonstrate structural plasticity of mature granule cells (Parnavelas et al., 1974; Caceres and Steward, 1983; Diekmann et al., 1996). The dentate gyrus also harbors a continuously proliferating population of neuronal precursors that can integrate into functional circuits and show enhanced short-term plasticity (Schmidt-Hieber et al., 2004; Abrous et al., 2005). To examine the response of adult-generated granule cells to unilateral complete transection of the perforant path in vivo, we tracked these cells using transgenic POMC-EGFP mice or by retroviral expression of GFP. Lesioning triggered a marked proliferation of newborn neurons. Subsequently, the dendrites of newborn neurons showed reduced complexity within the denervated zone, but dendritic spines still formed in the absence of glutamatergic nerve terminals. Electron micrographs confirmed the lack of intact presynaptic terminals apposing spines on mature cells and on newborn neurons. Newborn neurons, but not mature granule cells, had a higher density of dendritic spines in the inner molecular layer postlesion accompanied by an increase in miniature EPSC amplitudes and rise times. Our results indicate that injury causes an increase in newborn neurons and lamina-specific synaptic reorganization indicative of enhanced plasticity. The presence of de novo dendritic spines in the denervated zone suggests that the postlesion environment provides the necessary signals for spine formation.


Asunto(s)
Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Proliferación Celular , Giro Dentado/citología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Lesiones Encefálicas/prevención & control , Bromodesoxiuridina/metabolismo , Movimiento Celular/genética , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Maleato de Dizocilpina/administración & dosificación , Potenciales Evocados/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Neuronas/ultraestructura , Técnicas de Placa-Clamp/métodos , Vía Perforante/lesiones , Proopiomelanocortina/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Tinción con Nitrato de Plata , Estadísticas no Paramétricas , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
10.
J Neurosci ; 33(22): 9364-84, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23719805

RESUMEN

In vitro studies suggest that the intracellular C terminus of Neuroligin1 (NL1) could play a central role in the maturation of excitatory synapses. However, it is unknown how this activity affects synapses in vivo, and whether it may impact the development of complex behaviors. To determine how NL1 influences the state of glutamatergic synapses in vivo, we compared the synaptic and behavioral phenotypes of mice overexpressing a full-length version of NL1 (NL1FL) with mice overexpressing a version missing part of the intracellular domain (NL1ΔC). We show that overexpression of full-length NL1 yielded an increase in the proportion of synapses with mature characteristics and impaired learning and flexibility. In contrast, the overexpression of NL1ΔC increased the number of excitatory postsynaptic structures and led to enhanced flexibility in mnemonic and social behaviors. Transient overexpression of NL1FL revealed that elevated levels are not necessary to maintain synaptic and behavioral states altered earlier in development. In contrast, overexpression of NL1FL in the fully mature adult was able to impair normal learning behavior after 1 month of expression. These results provide the first evidence that NL1 significantly impacts key developmental processes that permanently shape circuit function and behavior, as well as the function of fully developed neural circuits. Overall, these manipulations of NL1 function illuminate the significance of NL1 intracellular signaling in vivo, and enhance our understanding of the factors that gate the maturation of glutamatergic synapses and complex behavior. This has significant implications for our ability to address disorders such as autism spectrum disorders.


Asunto(s)
Conducta Animal/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Sistemas de Mensajero Secundario/fisiología , Sinapsis/fisiología , Animales , Corteza Auditiva/crecimiento & desarrollo , Corteza Auditiva/fisiología , Western Blotting , Moléculas de Adhesión Celular Neuronal/genética , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Doxiciclina/farmacología , Fenómenos Electrofisiológicos , Proteínas Fluorescentes Verdes , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/psicología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Microscopía Confocal , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Reconocimiento en Psicología , Conducta Social , Predominio Social , Sinaptosomas/fisiología
11.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38749701

RESUMEN

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.


Asunto(s)
Canales de Calcio , Hipocampo , Ratones Noqueados , Proteínas Proto-Oncogénicas c-fos , Convulsiones , Animales , Ratones , Canales de Calcio/metabolismo , Canales de Calcio/genética , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Pentilenotetrazol , Proteínas Proto-Oncogénicas c-fos/metabolismo , Convulsiones/metabolismo , Convulsiones/genética , Convulsiones/patología
12.
Elife ; 122024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38179984

RESUMEN

Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN development. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.


Asunto(s)
Citoesqueleto de Actina , Distroglicanos , Animales , Ratones , Distroglicanos/genética , Axones , Modelos Animales de Enfermedad , Prosencéfalo , Convulsiones
13.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986872

RESUMEN

The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy in hippocampal tissue from wildtype (WT) and α2δ-2 knockout (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos expression within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 hour after handling-associated convulsions, KO mice had fewer c-fos-positive cells in the dentate gyrus, indicating that activity in the dentate gyrus actually decreased. However, the dentate was significantly more active in KO mice compared to WT after administration of a subthreshold pentylenetetrazole dose, consistent with increased susceptibility to proconvulsant stimuli. Other histopathological markers of temporal lobe epilepsy in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar in WT and KO mice, apart from a small but significant increase in hilar mossy cell density, opposite to what is typically found in mice with temporal lobe epilepsy. This suggests that the differences in seizure-associated hippocampal function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.

14.
J Neurosci ; 31(11): 4345-54, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21411674

RESUMEN

Some cases of autism spectrum disorder have mutations in the lipid phosphatase, phosphatase and tensin homolog on chromosome 10 (Pten). Tissue specific deletion of Pten in the hippocampus and cortex of mice causes anatomical and behavioral abnormalities similar to human autism. However, the impact of reductions in Pten on synaptic and circuit function remains unexplored. We used in vivo stereotaxic injections of lentivirus expressing a short hairpin RNA to knock down Pten in mouse neonatal and young adult dentate granule cells. We then assessed the morphology and synaptic physiology between 2 weeks and 4 months later. Confocal imaging of the hippocampus revealed a marked increase in granule cell size and an increase in dendritic spine density. The onset of morphological changes occurred earlier in neonatal mice than in young adults. We used whole-cell recordings from granule cells in acute slices to assess synaptic function after Pten knockdown. Consistent with the increase in dendritic spines, the frequency of excitatory miniature and spontaneous postsynaptic currents increased. However, there was little or no effect on IPSCs. Thus, Pten knockdown results in an imbalance between excitatory and inhibitory synaptic activity. Because reductions in Pten affected mature granule cells as well as developing granule cells, we suggest that the disruption of circuit function by Pten hypofunction may be ongoing well beyond early development.


Asunto(s)
Espinas Dendríticas/fisiología , Giro Dentado/fisiología , Neuronas/fisiología , Fosfohidrolasa PTEN/metabolismo , Sinapsis/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Citometría de Flujo , Ratones , Ratones Transgénicos , Microscopía Confocal , Potenciales Postsinápticos Miniatura/fisiología , Red Nerviosa/fisiología , Fosfohidrolasa PTEN/genética , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/fisiología
15.
Philos Trans R Soc Lond B Biol Sci ; 377(1843): 20200316, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-34894736

RESUMEN

Human societies are collective brains. People within every society have cultural brains-brains that have evolved to selectively seek out adaptive knowledge and socially transmit solutions. Innovations emerge at a population level through the transmission of serendipitous mistakes, incremental improvements and novel recombinations. The rate of innovation through these mechanisms is a function of (1) a society's size and interconnectedness (sociality), which affects the number of models available for learning; (2) fidelity of information transmission, which affects how much information is lost during social learning; and (3) cultural trait diversity, which affects the range of possible solutions available for recombination. In general, and perhaps surprisingly, all three levers can increase and harm innovation by creating challenges around coordination, conformity and communication. Here, we focus on the 'paradox of diversity'-that cultural trait diversity offers the largest potential for empowering innovation, but also poses difficult challenges at both an organizational and societal level. We introduce 'cultural evolvability' as a framework for tackling these challenges, with implications for entrepreneurship, polarization and a nuanced understanding of the effects of diversity. This framework can guide researchers and practitioners in how to reap the benefits of diversity by reducing costs. This article is part of a discussion meeting issue 'The emergence of collective knowledge and cumulative culture in animals, humans and machines'.


Asunto(s)
Evolución Cultural , Animales , Encéfalo , Creatividad , Humanos , Aprendizaje , Conducta Social
16.
J Neurotrauma ; 38(18): 2490-2501, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33899510

RESUMEN

Protein biomarkers are often measured at hospital presentation to diagnose traumatic brain injury (TBI) and predict patient outcomes. However, a biomarker measurement at this single time point is no more accurate at predicting patient outcomes than less invasive and more cost-effective methods. Here, we review evidence that TBI biomarkers provide greater prognostic value when measured repeatedly over time, such that a trajectory of biomarker concentrations can be evaluated. PubMed, Google Scholar, and Cochrane Central Register were searched to identify studies from the last decade in which established TBI biomarkers had been measured at more than one time point following acute TBI, and which related their findings to patient outcomes. Twenty-two studies were identified, 18 of which focused on adults and 4 of which focused on children. Three general biomarker trajectories were identified: persistently high, persistently low, and reversal of decreasing concentrations. Downtrend reversal was highly specific to predicting poor patient outcomes. Four studies demonstrated that biomarker trajectories can be affected by therapeutic interventions. Additional studies demonstrated that biomarkers measured at a later time point offered superior prognostic value than a single measurement obtained at initial hospital presentation. Among other details, longitudinal biomarker trajectory assessments may identify ongoing injury and predict patient deterioration before clinical symptoms develop and thus help guide therapeutic interventions.


Asunto(s)
Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/terapia , Resultado del Tratamiento , Adulto , Animales , Niño , Humanos , Valor Predictivo de las Pruebas , Pronóstico
17.
PLoS One ; 16(7): e0255123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34297764

RESUMEN

Coronavirus disease (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is responsible for a global pandemic characterized by high transmissibility and morbidity. Healthcare workers (HCWs) are at risk of contracting COVID-19, but this risk has been mitigated through the use of personal protective equipment such as N95 Filtering Facepiece Respirators (FFRs). At times the high demand for FFRs has exceeded supply, placing HCWs at increased exposure risk. Effective FFR decontamination of many FFR models using ultraviolet-C germicidal irradiation (UVGI) has been well-described, and could maintain respiratory protection for HCWs in the face of supply line shortages. Here, we detail the construction of an ultraviolet-C germicidal irradiation (UVGI) device using previously existing components available at our institution. We provide data on UV-C dosage delivered with our version of this device, provide information on how users can validate the UV-C dose delivered in similarly constructed systems, and describe a simple, novel methodology to test its germicidal effectiveness using in-house reagents and equipment. As similar components are readily available in many hospitals and industrial facilities, we provide recommendations on the local construction of these systems, as well as guidance and strategies towards successful institutional implementation of FFR decontamination.


Asunto(s)
COVID-19 , Desinfección , Respiradores N95 , Pandemias , SARS-CoV-2 , Rayos Ultravioleta , COVID-19/epidemiología , COVID-19/prevención & control , Humanos
18.
J Neurosurg Anesthesiol ; 33(2): 100-106, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33660699

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has impacted many aspects of neuroscience research. At the 2020 Society of Neuroscience in Anesthesiology and Critical Care (SNACC) Annual Meeting, the SNACC Research Committee met virtually to discuss research challenges encountered during the COVID-19 pandemic along with possible strategies for facilitating research activities. These challenges and recommendations are included in this Consensus Statement. The objectives are to: (1) provide an overview of the disruptions and challenges to neuroscience research caused by the COVID-19 pandemic, and; (2) put forth a set of consensus recommendations for strengthening research sustainability during and beyond the current pandemic. Specific recommendations are highlighted for adapting laboratory and human subject study activities to optimize safety. Complementary research activities are also outlined for both laboratory and clinical researchers if specific investigations are impossible because of regulatory or societal changes. The role of virtual platforms is discussed with respect to fostering new collaborations, scheduling research meetings, and holding conferences such that scientific collaboration and exchange of ideas can continue. Our hope is for these recommendations to serve as a valuable resource for investigators in the neurosciences and other research disciplines for current and future research disruptions.


Asunto(s)
COVID-19/prevención & control , Neurociencias/métodos , Investigación , Consenso , Humanos , Pandemias , SARS-CoV-2 , Sociedades Médicas
19.
medRxiv ; 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511592

RESUMEN

Coronavirus disease (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is responsible for the 2020 global pandemic and characterized by high transmissibility and morbidity. Healthcare workers (HCWs) are at risk of contracting COVID-19, and this risk is mitigated through the use of personal protective equipment such as N95 Filtering Facepiece Respirators (FFRs). The high demand for FFRs is not currently met by global supply chains, potentially placing HCWs at increased exposure risk. Effective FFR decontamination modalities exist, which could maintain respiratory protection for HCWs in the midst of the current pandemic, through the decontamination and re-use of FFRs. Here, we present a locally-implemented ultraviolet-C germicidal irradiation (UVGI)-based FFR decontamination pathway, utilizing a home-built UVGI array assembled entirely with previously existing components available at our institution. We provide recommendations on the construction of similar systems, as well as guidance and strategies towards successful institutional implementation of FFR decontamination.

20.
PLoS One ; 14(10): e0215789, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31596871

RESUMEN

Mouse models of mesial temporal lobe epilepsy recapitulate aspects of human epilepsy, which is characterized by neuronal network remodeling in the hippocampal dentate gyrus. Observational studies suggest that this remodeling is associated with altered Wnt pathway signaling, although this has not been experimentally examined. We used the well-characterized mouse intrahippocampal kainate model of temporal lobe epilepsy to examine associations between hippocampal neurogenesis and altered Wnt signaling after seizure induction. Tissue was analyzed using immunohistochemistry and confocal microscopy, and gene expression analysis was performed by RT-qPCR on RNA extracted from anatomically micro-dissected dentate gyri. Seizures increased neurogenesis and dendritic arborization of newborn hippocampal dentate granule cells in peri-ictal regions, and decreased neurogenesis in the ictal zone, 2-weeks after kainate injection. Interestingly, administration of the novel canonical Wnt pathway inhibitor XAV939 daily for 2-weeks after kainate injection further increased dendritic arborization in peri-ictal regions after seizure, without an effect on baseline neurogenesis in control animals. Transcriptome analysis of dentate gyri demonstrated significant canonical Wnt gene dysregulation in kainate-injected mice across all regions for Wnt3, 5a and 9a. Intriguingly, certain Wnt genes demonstrated differential patterns of dysregulation between the ictal and peri-ictal zones, most notably Wnt5B, 7B and DKK-1. Together, these results demonstrate regional variation in Wnt pathway dysregulation early after seizure induction, and surprisingly, suggest that some Wnt-mediated effects might actually temper aberrant neurogenesis after seizures. The Wnt pathway may therefore provide suitable targets for novel therapies that prevent network remodeling and the development of epileptic foci in high-risk patients.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Ácido Kaínico/efectos adversos , Red Nerviosa/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Animales , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Ácido Kaínico/farmacología , Ratones , Ratones Transgénicos , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Proteínas Wnt/biosíntesis , Proteínas Wnt/genética , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA