Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Chemistry ; 30(3): e202303251, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37874966

RESUMEN

Alkali nitridophosphates AP4 N7 and A3 P6 N11 (A=Na, K, Rb, Cs) have been known for decades. However, their Li homologues have remained elusive. In this work, the highly condensed lithium (imido)nitridophosphates LiP4 N7 and Li3-x P6 N11-x (NH)x (x=1.66(3)) were synthesized from LiPN2 and P3 N5 in the multianvil press at 10 GPa. They constitute the first lithium nitridophosphates with 3D networks exhibiting a degree of condensation larger than 0.5 and high thermal stability. LiP4 N7 crystallizes in the orthorhombic space group P21 21 21 with a=4.5846(6) Å, b=8.0094(11) Å, and c=13.252(2) Š(Z=4). Li3-x P6 N11-x (NH)x crystallizes in the triclinic space group P 1 - ${\mathrel{\mathop{{\rm { 1}}}\limits^{{\rm -}}}}$ with Z=2, a=4.6911(11) Å, b=7.024(2) Å, c=12.736(3) Å, α=87.726(11), ß=80.279(11), and γ=70.551(12)°. Both compounds are stable against hydrolysis in air.

2.
Chemistry ; 30(36): e202401238, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38655832

RESUMEN

The imidonitridosilicate Rb3Si6N5(NH)6, being only the second representative of this compound class, was synthesized ammonothermally at 870 K and 230 MPa. Its crystal structure was solved from single-crystal X-ray diffraction data. The imidonitridosilicate crystallizes isotypically with the respective potassium compound in space group P4132 with the lattice parameter a=10.9422(4) Šforming a three-dimensional imidonitridosilicate tetrahedra network with voids for the rubidium ions. The structure model and the presence of the imide groups were verified by Fourier-Transform infrared (FTIR) and magic-angle spinning (MAS) NMR spectroscopy, using cross polarization 15N{1H} and 29Si{1H} MAS NMR experiments. Rb3Si6N5(NH)6 represents a possible intermediate during the ammonothermal synthesis of nitridosilicates. The characterization of such intermediates improves the understanding of the reaction pathway from ammonothermal solutions to nitrides. Thus, the ammonothermal synthesis is an alternative approach to the well-established high-temperature synthesis leading to the compound class of nitridosilicates.

3.
Chemistry ; : e202401428, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717583

RESUMEN

Sn3P8N16 combines the structural versatility of nitridophosphates and Sn within one compound. It was synthesized as dark gray powder in a high-pressure high-temperature reaction at 800 °C and 6 GPa from Sn3N4 and P3N5. The crystal structure was elucidated from single-crystal diffraction data (space group C2/m (no. 12), a=12.9664(4), b=10.7886(4), c=4.8238(2) Å, ß=109.624(1)°) and shows a 3D-network of PN4 tetrahedra, incorporating Sn in oxidation states +II and +IV. The Sn cations are located within eight-membered rings of vertex-sharing PN4 tetrahedra, stacked along the [001] direction. A combination of solid-state nuclear magnetic resonance spectroscopy, 119Sn Mössbauer spectroscopy and density functional theory calculations was used to confirm the mixed oxidation of Sn. Temperature-dependent powder X-ray diffraction measurements reveal a low thermal expansion of 3.6 ppm/K up to 750 °C, beyond which Sn3P8N16 starts to decompose.

4.
Chemistry ; 30(29): e202400766, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38483015

RESUMEN

A series of isostructural imidonitridophosphates AE2AlP8N15(NH) (AE=Ca, Sr, Ba) was synthesized at high-pressure/high-temperature conditions (1400 °C and 5-9 GPa) from alkaline-earth metal nitrides or azides Ca3N2/Sr(N3)2/Ba(N3)2 and the binary nitrides AlN and P3N5. NH4F served as a hydrogen source and mineralizing agent. The crystal structures were determined by single-crystal X-ray diffraction and feature a three-dimensional network of vertex-sharing PN4-tetrahedra forming diverse-sized rings that are occupied by aluminum and alkaline earth ions. These structures represent another example of nitridophosphate-based networks that simultaneously incorporate AlN6-octahedra and alkaline-earth-centered polyhedra, with aluminum not participating in the tetrahedra network. They differ from previously reported ones by incorporating non-condensed octahedra instead of strongly condensed octahedra units and contribute to the diversity of multicationic nitridophosphate network structures. The results are supported by atomic resolution EDX mapping, solid-state NMR and FTIR measurements. Eu2+-doped samples show strong luminescence with narrow emissions in the range of green to blue under UV excitation, marking another instance of Eu2+-luminescence within imidonitridophosphates.

5.
Inorg Chem ; 63(2): 1480-1487, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154029

RESUMEN

In this work, we present the synthesis, characterization, and optical properties of Sr5Si7P2N16:Eu2+, the first tetrahedral (Si,P)-N network in which Si occupies more than 50% of the tetrahedra. While past studies have shown progress with anionic (Si,P)-N networks, the potential of silicon-rich compounds remains untapped. The synthesized compound Sr5Si7P2N16 exhibits a unique mixture of substitutional order and positional disorder within its network. The analytical challenges posed by the similarities between Si4+ and P5+, along with the network's disorder, were overcome by combining single-crystal X-ray diffraction and scanning transmission electron microscopy EDX mapping. Low-cost crystallographic calculations provided additional insights into the identification of tetrahedral occupations in mixed networks. Luminescence investigations on Sr5Si7P2N16:Eu2+ revealed yellow emission, adding to the known blue, green, and orange emission maxima of Sr-(Si,P)-N networks, highlighting the variability of such compounds.

6.
Inorg Chem ; 63(7): 3535-3543, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38324917

RESUMEN

High-pressure, high-temperature (HP/HT) syntheses are essential for modern high-performance materials. Phosphorus nitride, nitridophosphate, and more generally nitride syntheses benefit greatly from HP/HT conditions. In this contribution, we present the first systematic in situ investigation of a nitridophosphate HP/HT synthesis using the reaction of zinc nitride Zn3N2 and phosphorus(V) nitride P3N5 to the nitride semiconductor Zn2PN3 as a case study. At a pressure of 8 GPa and temperatures up to 1300 °C, the reaction was monitored by energy-dispersive powder X-ray diffraction (ED-PXRD) in a large-volume press at beamline P61B at DESY. The experiments investigate the general behavior of the starting materials under extreme conditions and give insight into the reaction. During cold compression and subsequent heating, the starting materials remain crystalline above their ambient-pressure decomposition points, until a sufficient minimum temperature is reached and the reaction starts. The reaction proceeds via ion diffusion at grain boundaries with an exponential decay in the reaction rate. Raising the temperature above the minimum required value quickly completes the reaction and initiates single-crystal growth. After cooling and decompression, which did not influence the resulting product, the recovered sample was analyzed by energy-dispersive X-ray (EDX) spectroscopy.

7.
Inorg Chem ; 63(11): 5227-5234, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38451057

RESUMEN

We report on the synthesis of two-layered alkali germanates, Na2Ge4O7 and K2Ge4O7. Both compounds were synthesized by using the ammonothermal method at 823 K and 100 MPa. Under these conditions, germanium is partially reduced from the +IV state to +II, forming mixed-valence compounds with the rarely observed [Ge(II)O3]4- unit. The valence state was verified by X-ray photoelectron spectroscopy (XPS) and was accompanied by theoretical calculations alongside vibrational spectroscopy and single-crystal X-ray structure determination. The compounds crystallize in the trigonal space groups (Na2Ge4O7: P3̅c1 and K2Ge4O7: P3̅m1) and feature layers of corner sharing [Ge(II)O3]4- and [Ge(IV)2O7]6- units forming [Ge(II)2Ge(IV)2O7]2- polyanions. These layers are separated by alkali metal ions. The compounds are colorless insulators with band gaps of 4.0-4.2 eV. According to the Robin-Day classification, both compounds can be described as class I materials, where the valences are trapped on specific sites.

8.
Inorg Chem ; 63(18): 8502-8509, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38657029

RESUMEN

Nitridophosphates and nitridogermanates attract high interest in current research due to their structural versatility. Herein, the elastic properties of GeP2N4 were investigated by single-crystal X-ray diffraction (XRD) upon compression to 44.4(1) GPa in a diamond anvil cell. Its isothermal bulk modulus was determined to be 82(6) GPa. At 44.4(1) GPa, laser heating resulted in the formation of multiple crystalline phases, one of which was identified as unprecedented germanium nitridophosphate GePN3. Its structure was elucidated from single-crystal XRD data (C2/c (no. 15), a = 8.666(5), b = 8.076(4), c = 4.691(2) Å, ß = 101.00(7)°) and is built up from layers of GeN6 octahedra and PN4 tetrahedra. The GeN6 octahedra form double zigzag chains, while the PN4 tetrahedra are found in single zigzag chains. GePN3 can be recovered to ambient conditions with a unit cell volume increase of about 12%. It combines PV and GeIV in a condensed nitridic network for the first time.

9.
Phys Chem Chem Phys ; 26(7): 6277-6291, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305760

RESUMEN

We have previously presented a computational protocol that is based on an embedded cluster model and operates in the framework of TD-DFT in conjunction with the excited state dynamics (ESD) approach. The protocol is able to predict the experimental absorption and emission spectral shapes of Eu2+-doped phosphors. In this work, the applicability domain of the above protocol is expanded to Eu2+-doped phosphors bearing multiple candidate Eu doping centers. It will be demonstrated that this protocol provides full control of the parameter space that describes the emission process. The stability of Eu doping at various centers is explored through local energy decomposition (LED) analysis of DLPNO-CCSD(T) energies. This enables further development of the understanding of the electronic structure of the targeted phosphors, the diverse interactions between Eu and the local environment, and their impact on Eu doping probability, and control of the emission properties. Hence, it can be employed to systematically improve deficiencies of existing phosphor materials, defined by the presence of various intensity emission bands at undesired frequencies, towards classes of candidate Eu2+-doped phosphors with desired narrow band red emission. For this purpose, the chosen study set consists of three UCr4C4-based narrow-band phosphors, namely the known alkali lithosilicates RbNa[Li3SiO4]2:Eu2+ (RNLSO2), RbNa3[Li3SiO4]4:Eu2+ (RNLSO) and their isotypic nitridolithoaluminate phosphors consisting of CaBa[LiAl3N4]2:Eu2+ (CBLA2) and the proposed Ca3Ba[LiAl3N4]4:Eu2+ (CBLA), respectively. The theoretical analysis presented in this work led us to propose a modification of the CBLA2 phosphor that should have improved and unprecedented narrow band red emission properties. Finally, we believe that the analysis presented here is important for the future rational design of novel Eu2+-doped phosphor materials, with a wide range of applications in science and technology.

10.
Angew Chem Int Ed Engl ; 63(29): e202404953, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38666517

RESUMEN

Although beryllium and its compounds show outstanding properties, owing to its toxic potential and extreme reaction conditions the chemistry of Be under high-pressure conditions has only been investigated sparsely. Herein, we report on the highly condensed wurtzite-type Be2PN3, which was synthesized from Be3N2 and P3N5 in a high-pressure high-temperature approach at 9 GPa and 1500 °C. It is the missing member in the row of formula type M2PN3 (M = Mg, Zn). The structure was elucidated by powder X-ray diffraction (PXRD), revealing that Be2PN3 is a double nitride, rather than a nitridophosphate. The structural model was further corroborated by 9Be and 31P solid-state nuclear magnetic resonance (NMR) spectroscopy. We present 9Be NMR data for tetrahedral nitride coordination for the first time. Infrared and energy-dispersive X-ray spectroscopy (FTIR and EDX), as well as temperature dependent PXRD complement the analytical characterization. Density functional theory (DFT) calculations reveal super-incompressible behavior and the remarkable hardness of this low-density material. The formation of Be2PN3 through a high-pressure high-temperature approach expands the synthetic access to Be-containing compounds and may open access to various multinary beryllium nitrides.

11.
Angew Chem Int Ed Engl ; 63(4): e202316469, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38051820

RESUMEN

Skutterudites are of high interest in current research due to their diversity of structures comprising empty, partially filled and filled variants, mostly based on metallic compounds. We herein present Ba12 [BN2 ]6.67 H4 , forming a non-metallic filled anti-skutterudite. It is accessed in a solid-state ampoule reaction from barium subnitride, boron nitride and barium hydride at 750 °C. Single-crystal X-ray and neutron powder diffraction data allowed to elucidate the structure in the cubic space group Im 3 ‾ ${\bar{3}}$ (no. 204). The barium and hydride atoms form a three-dimensional network consisting of corner-sharing HBa6 octahedra and Ba12 icosahedra. Slightly bent [BN2 ]3- units are located in the icosahedra and the voids in-between. 1 H and 11 B magic angle spinning (MAS) NMR experiments and vibrational spectroscopy further support the structure model. Quantum chemical calculations coincide well with experimental results and provide information about the electronic structure of Ba12 [BN2 ]6.67 H4 .

12.
Angew Chem Int Ed Engl ; 63(17): e202401419, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38340088

RESUMEN

This study presents the synthesis and characterization of oxonitridosilicate phosphates Sr3SiP3O2N7, Sr5Si2P4ON12, and Sr16Si9P9O7N33 as the first of their kind. These compounds were synthesized under high-temperature (1400 °C) and high-pressure (3 GPa) conditions. A unique structural feature is their common fundamental building unit, a vierer single chain of (Si, P)(O, N)4 tetrahedra. All tetrahedra comprise substitutional disorder which is why we refer to it as the fundamental disorder unit (FDU). We classified four different FDU motifs, revealing systematic bonding patterns. Including literature known Sr5Si2P6N16, three of the four patterns were found in the presented compounds. Common techniques like single-crystal X-ray diffraction (SCXRD), elemental analyses, and 31P nuclear magnetic resonance (NMR) spectroscopy were utilized for structural analysis. Additionally, low-cost crystallographic calculations (LCC) provided insights into the structure of Sr16Si9P9O7N33 where NMR data were unavailable due to the lack of bulk samples. The optical properties of these compounds, when doped with Eu2+, were investigated using photoluminescence excitation (PLE), photoluminescence (PL) measurements, and density functional theory (DFT) calculations. Factors influencing the emission properties, including thermal quenching mechanisms, were discussed. This research reveals the new class of oxonitridosilicate phosphates with unique systematic structural features that offer potential for theoretical studies of luminescence and band gap tuning in insulators.

13.
Angew Chem Int Ed Engl ; : e202405849, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779989

RESUMEN

Nitridophosphates, with their primary structural motif of isolated or condensed PN4 tetrahedra, meet many requirements for high performance materials. Their properties are associated with their structural diversity, which is mainly limited by this specific building block. Herein, we present the alkaline earth metal nitridophosphate oxide Ba3[PN3]O featuring a trigonal planar [PN3]4- anion. Ba3[PN3]O was obtained using a hot isostatic press by medium-pressure high-temperature synthesis (MP/HT) at 200 MPa and 880 °C. The crystal structure was solved and refined from single-crystal X-ray diffraction data in space group R 3 ‾ ${\bar 3}$ c (no. 167) and confirmed by SEM-EDX, magic angle spinning (MAS) NMR, vibrational spectroscopy (Raman, IR) and low-cost crystallographic calculations (LCC). MP/HT synthesis reveals great potential by extending the structural chemistry of P to include trigonal planar [PN3]4- motifs.

14.
Angew Chem Int Ed Engl ; 63(23): e202403648, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567876

RESUMEN

Tetrahedron-based nitrides offer a wide range of properties and applications. Highly condensed nitridophosphates are examples of nitrides that exhibit fascinating luminescence properties when doped with Eu2+, making them appealing for industrial applications. Here, we present the first nitridomagnesophosphate solid solution series Ba3-xSrx[Mg2P10N20] : Eu2+ (x=0-3), synthesized by a high-pressure high-temperature approach using the multianvil technique (3 GPa, 1400 °C). Starting from the binary nitrides P3N5 and Mg3N2 and the respective alkaline earth azides, we incorporate Mg into the P/N framework to increase the degree of condensation κ to 0.6, the highest observed value for alkaline earth nitridophosphates. The crystal structure was elucidated by single-crystal X-ray diffraction, powder X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), and solid-state NMR. DFT calculations were performed on the title compounds and other related highly condensed nitridophosphates to investigate the influence of Mg in the P/N network. Eu2+-doped samples of the solid solution series show a tunable narrow-band emission from cyan to green (492-515 nm), which is attributed to the preferred doping of a single crystallographic site. Experimental confirmation of this assumption was provided by overdoping experiments and STEM-HAADF studies on the series as well on the stoichiometric compound Ba2Eu[Mg2P10N20] with additional atomic resolution energy-dispersive X-ray spectroscopy (EDX) mapping.

15.
Angew Chem Int Ed Engl ; : e202404927, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38746974

RESUMEN

Ammeline is a simple, readily available, molecular compound, which has been known for nearly 200 years. Despite that, no proper structural characterization of ammeline has been conducted so far. For this reason, the prevalent tautomeric form of ammeline in the solid remained unknown to this date. In the course of this study, its crystal structure was finally established by single-crystal X-ray diffraction. In this structure, ammeline is exclusively found as its 4,6-diamino-1,3,5-triazin-2(1H)-one tautomer and adopts layered structure with an exceptionally high hydrogen bond density. Ammeline shows an interesting amphoteric behavior. Therefore, the synthesis and structural characterization of some of its salts were carried out to investigate the influence of the protonation degree on its molecular structure. In particular, the crystal structure of silver ammelinate monohydrate was solved as the first reported structure containing deprotonated ammeline. Moreover, the crystal structures of three different modifications of ammelinium perchlorate were elucidated and the transformation conditions between them were studied. Lastly, the crystal structure of ammelinediium diperchlorate monohydrate, containing unprecedented doubly protonated ammeline, was determined. The products' thermal behavior was studied by differential thermal analysis and thermogravimetric analysis. The perchlorate salts were additionally examined for their potential as insensitive high-energy-density materials.

16.
Angew Chem Int Ed Engl ; : e202409593, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963036

RESUMEN

The research for wurtzite-type ternary nitride semiconductors containing earth abundant elements with a stoichiometry of 1:1:2 was focused on metals like Mg or Zn, so far. The vast majority of these Grimm-Sommerfeld analogous compounds crystallize in the ß-NaFeO2 structure, although a second arrangement in space group Pmc21 is predicted to be a viable alternative. Despite extensive theoretical and experimental studies, this structure has so far remained undiscovered. Herein, we report on BeGeN2 in a Pmc21 structure, synthesized from Be3N2 and Ge3N4 using a high-pressure high-temperature approach at 6 GPa and 800 °C. The compound was characterized by powder X-ray diffraction (PXRD), solid state nuclear magnetic resonance (NMR), Raman and energy dispersive X-ray (EDX) spectroscopy, temperature-dependent PXRD, second harmonic generation (SHG) and UV/VIS measurements and in addition also compared to its lighter homologue BeSiN2 in all mentioned analytic techniques. The synthesis and investigation of both the first beryllium germanium nitride and the first ternary wurtzite-type nitride crystallizing in space group Pmc21 open the door to a new field of research on wurtzite-type related structures.

17.
Angew Chem Int Ed Engl ; 63(14): e202401421, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38361110

RESUMEN

The first nitridic analog of an amphibole mineral, the quaternary nitridosilicate phosphate Cr5.7Si2.3P8N24 was synthesized under high-pressure high-temperature conditions at 1400 °C and 12 GPa from the binary nitrides Cr2N, Si3N4 and P3N5, using NH4N3 and NH4F as additional nitrogen source and mineralizing agent, respectively. The crystal structure was elucidated by single-crystal X-ray diffraction with microfocused synchrotron radiation (C2/m, a=9.6002(19), b=17.107(3), c=4.8530(10) Å, ß=109.65(3)°). The elemental composition was analyzed by energy dispersive X-ray spectroscopy. The structure consists of vertex-sharing PN4-tetrahedra forming zweier double chains and edge-sharing (Si,Cr)-centered octahedra forming separated ribbons. Atomic resolution scanning transmission electron microscopy shows ordered Si and Cr sites next to a disordered Si/Cr site. Optical spectroscopy indicates a band gap of 2.1 eV. Susceptibility measurements show paramagnetic behavior and support the oxidation state Cr+IV, which is confirmed by EPR. The comprehensive analysis expands the field of Cr-N chemistry and provides access to a nitride analog of one of the most prevalent silicate structures.

18.
Angew Chem Int Ed Engl ; 63(7): e202318214, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100520

RESUMEN

The elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks. In this study, the high-pressure high-temperature reaction behavior of malononitrile H2 C(CN)2 , dicyandiamide (H2 N)2 C=NCN, and melamine (C3 N3 )(NH2 )3 was investigated in laser-heated diamond anvil cells. Two previously unknown compounds, namely α-C(NH)2 and ß-C(NH)2 , have been synthesized and found to have fully sp3 -hybridized carbon atoms. α-C(NH)2 crystallizes in a distorted ß-cristobalite structure, while ß-C(NH)2 is built from previously unknown imide-bridged 2,4,6,8,9,10-hexaazaadamantane units, which form two independent interpenetrating diamond-like networks. Their stability domains and compressibility were studied, for which supporting density functional theory calculations were performed.

19.
Chemistry ; 29(54): e202301960, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37410334

RESUMEN

Tetrahedra-based nitridophosphates show a rich structural chemistry, which can be further extended by incorporating cations in higher coordinated positions, for example, in octahedral voids or by substituting the nitrogen atoms in the network with other anions. Following this approach, SrAl5 P4 N10 O2 F3 was synthesized at high-temperature and high-pressure conditions using a multianvil press (1400 °C, 5 GPa) starting from Sr(N3 )2 , c-PON, P3 N5 , AlN, and NH4 F. SrAl5 P4 N10 O2 F3 crystallizes in space group I 4 ‾ m 2 ${I\bar 4m2}$ with a=11.1685(2) and c=7.84850(10) Å. Atomic-resolution EDX mapping with scanning transmission electron microscopy (STEM) indicates atom assignments, which are further corroborated by bond-valence sum (BVS) calculations. Ten Al3+ -centered octahedra form a highly condensed tetra-face-capped octahedra-based unit that is a novel structure motif in network compounds. A network of vertex-sharing PN4 tetrahedra and chains of face-sharing Sr2+ -centered cuboctahedra complement the structure. Eu2+ -doped SrAl5 P4 N10 O2 F3 shows blue emission (λem= 469 nm, fwhm=98 nm; 4504 cm-1 ) when irradiated with UV light.

20.
Chemistry ; 29(23): e202300736, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36951441

RESUMEN

Invited for the cover of this issue are the groups of Oliver Oeckler at Leipzig University and Wolfgang Schnick at University of Munich (LMU). The image background depicts a diffraction pattern of an intergrown crystal containing P40 O31 N46 as a night sky. P40 O31 N46 and P74 O59 N84 form complex disordered frameworks, a cutout of which symbolizes the earth's surface (which mainly contains silicates with related building blocks). The structures are built up from chain-like building units, which fall like rain, symbolizing the modular building scheme. Read the full text of the article at 10.1002/chem.202203892.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA