Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 1): 77-84, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010796

RESUMEN

A plug-flow fixed-bed cell for synchrotron powder X-ray diffraction (PXRD) and X-ray absorption fine structure (XAFS) idoneous for the study of heterogeneous catalysts at high temperature, pressure and under gas flow is designed, constructed and demonstrated. The operating conditions up to 1000°C and 50 bar are ensured by a set of mass flow controllers, pressure regulators and two infra-red lamps that constitute a robust and ultra-fast heating and cooling method. The performance of the system and cell for carbon dioxide hydrogenation reactions under specified temperatures, gas flows and pressures is demonstrated both for PXRD and XAFS at the P02.1 (PXRD) and the P64 (XAFS) beamlines of the Deutsches Elektronen-Synchrotron (DESY).

2.
Angew Chem Int Ed Engl ; : e202405120, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743001

RESUMEN

The bifunctional CO-dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex couples the reduction of CO2 to the condensation of CO with a methyl moiety and CoA to acetyl-CoA. Catalysis occurs at two sites connected by a tunnel transporting the CO. In this study, we investigated how the bifunctional complex and its tunnel support catalysis using the CODH/ACS from Carboxydothermus hydrogenoformans as a model. Although CODH/ACS adapted to form a stable bifunctional complex with a secluded substrate tunnel, catalysis and CO transport is even more efficient when two monofunctional enzymes are coupled. Efficient CO channeling appears to be ensured by hydrophobic binding sites for CO, which act in a bucket-brigade fashion rather than as a simple tube. Tunnel remodeling showed that opening the tunnel increased activity but impaired directed transport of CO. Constricting the tunnel impaired activity and CO transport, suggesting that the tunnel evolved to sequester CO rather than to maximize turnover.

3.
J Phys Chem A ; 126(23): 3724-3731, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35653261

RESUMEN

Photochemical and photocatalytic activity of adsorbates on surfaces is strongly dependent on the nature of a given substrate and its resonant absorption of the (visible) light excitation. An observation is reported here of the visible light photochemical response of formamidinium lead bromide (FAPbBr3) halide perovskite and carbon nitride (CN) thin-film materials (deposited on a SiO2/Si(100) substrate), both of which are known for their photovoltaic and photocatalytic properties. The goal of this study was to investigate the role of the substrate in the photochemical reactivity of an identical probe molecule, ethyl chloride (EC), when excited by pulsed 532 nm laser under ultrahigh vacuum (UHV) conditions. Postirradiation temperature-programmed desorption (TPD) measurements have indicated that the C-Cl bond dissociates following the visible light excitation to form surface-bound fragments that react upon surface heating to form primarily ethane and butane. Temperature-dependent photoluminescence (PL) spectra of the FAPbBr3 films were recorded and decay lifetimes were measured, revealing a correlation between length of PL decay and the photoreactivity yield. We conclude that the FAPbBr3 material with its absorption spectrum in resonance with visible light excitation (532 nm) and longer PL lifetime leads to three times faster (larger cross-section) photoproduct formation compared with that on the CN substrate. These results contrast the behavior under ambient conditions where the CN materials are photochemically superior due, primarily, to their stability within humid environments.

4.
Phys Chem Chem Phys ; 23(3): 2355-2367, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33449989

RESUMEN

Pickering emulsions (PEs), i.e. particle stabilized emulsions, are used as reaction environments in biphasic catalysis for the hydroformylation of 1-dodecene into tridecanal using the catalyst rhodium (Rh)-sulfoxantphos (SX). The present study connects the knowledge about particle-catalyst interactions and PE structure with the reaction results. It quantifies the efficiency of the catalytic performance of the catalyst localized in the voids between the particles (liquid-liquid interface) and the catalyst adsorbed on the particle surface (liquid-solid interface) using a new numerical approach. First, it is ensured that the overall packing density and geometry at the droplet interface and the size of the water droplets of the resulting w/o PEs are predictable. Second, it is shown that approximately all particles assemble at the droplet surface after emulsion preparation and neither the packing parameter nor the droplet size change with the particle surface charge or size when the total particle cross section is kept constant. Third, studies on the influence of the catalyst on the emulsion structure reveal that irrespective of the particle charge the surface active and negatively charged catalyst Rh-SX reduces the PE droplet size significantly and decreases the particle packing parameter from s = 0.91 (hexagonal packing in 2D) to s = 0.69 (shattered structure). In this latter case, large voids of the free w/o interface form and become covered with the catalyst. With a deep knowledge about the PE structure the reaction efficiencies of the liquid-liquid vs. the solid-liquid interface are quantified. By excluding any other influence factors, it is shown that the activity of the catalyst is the same at the fluid and solid interface and the performance of the reaction is explained by the geometry of the system. After the reaction, the catalyst retention via membrane filtration is shown to be successfully achieved without damaging the emulsions. This enables the continuous recovery of the catalyst, i.e. the most expensive compound in PE-based catalytic reactions, being a crucial criterion for industrial applications.

5.
Angew Chem Int Ed Engl ; 60(36): 19797-19803, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34043858

RESUMEN

Covalent organic frameworks (COFs) have emerged as an important class of organic semiconductors and photocatalysts for the hydrogen evolution reaction (HER)from water. To optimize their photocatalytic activity, typically the organic moieties constituting the frameworks are considered and the most suitable combinations of them are searched for. However, the effect of the covalent linkage between these moieties on the photocatalytic performance has rarely been studied. Herein, we demonstrate that donor-acceptor (D-A) type imine-linked COFs can produce hydrogen with a rate as high as 20.7 mmol g-1 h-1 under visible light irradiation, upon protonation of their imine linkages. A significant red-shift in light absorbance, largely improved charge separation efficiency, and an increase in hydrophilicity triggered by protonation of the Schiff-base moieties in the imine-linked COFs, are responsible for the improved photocatalytic performance.

6.
Photochem Photobiol Sci ; 18(7): 1833-1839, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31166362

RESUMEN

Liquid phase adsorption is a common technique in waste water purification. However, this process has some downsides. The removal of environmentally harmful contaminants from organic liquids by adsorption produces secondary waste which has to be treated afterwards. The treatment can be e.g. high temperatures or a landfill. Photocatalysts such as CN6 can remove the dye under light irradiation but most times they have to be separated afterwards. Immobilisation of these photocatalysts can be one way to address this problem. The resulting photocatalyst layers were analysed in operando by near-ambient pressure XPS. This enabled us to detect the active species, i.e. oxygen radicals, at the surface, responsible for the dye degradation.

7.
J Am Chem Soc ; 140(4): 1423-1427, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29287143

RESUMEN

Covalent organic frameworks (COFs) are crystalline, highly porous, two- or three-dimensional polymers with tunable topology and functionalities. Because of their higher chemical stabilities in comparison to their boron-linked counterparts, imine or ß-ketoenamine linked COFs have been utilized for a broad range of applications, including gas storage, heterogeneous catalysis, energy storage devices, or proton-conductive membranes. Herein, we report the synthesis of highly porous and chemically stable acetylene (-C≡C-) and diacetylene (-C≡C-C≡C-) functionalized ß-ketoenamine COFs, which have been applied as photocatalyst for hydrogen generation from water. It is shown that the diacetylene moieties have a profound effect as the diacetylene-based COF largely outperforms the acetylene-based COF in terms of photocatalytic activity. As a combined effect of high porosity, easily accessible diacetylene (-C≡C-C≡C-) functionalities and considerable chemical stability, an efficient and recyclable heterogeneous photocatalytic hydrogen generation is achieved.

8.
Chemistry ; 24(48): 12592-12599, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29802668

RESUMEN

The direct partial oxidation of methane to methanol is a challenging scientific and economical objective to expand the application of this abundant fuel gas as a major resource for one-step production of value-added chemicals. Despite substantial efforts to commercialize this synthetic route, to date no heterogeneous catalyst can selectively oxidize methane to methanol by O2 with an economically acceptable conversion. Cu-exchanged zeolites have been recently highlighted as one of the most promising bioinspired catalysts toward the direct production of methanol from methane under mild conditions. In this work, Cu-based catalysts were prepared using mesoporous silica SBA-15 as an alternative support and their activity for this conversion was investigated. The results demonstrate that highly dispersed CuO species on SBA-15 are able to react with methane and subsequently produce methanol with high selectivity (>84 %) through water-assisted extraction. Furthermore, it was confirmed that the main intermediate formed after interaction of the catalyst with methane is a methoxyl species, which can be further converted to methanol or dimethyl ether on extraction with water or methanol, respectively.

9.
J Org Chem ; 83(14): 7398-7406, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29762024

RESUMEN

Surfactant-modified reaction systems are one approach to perform organic reactions with water as the solvent involving hydrophobic reactants. Herein, the alkaline hydrolysis of the long-chain methyl decanoate in cationic and nonionic surfactant-modified systems is reported. The physicochemical behavior of the reaction mixture and the performance of the alkaline hydrolysis were systematically investigated. In water as the solvent, the reaction is slow, but at elevated temperatures, the alkaline hydrolysis of methyl decanoate is accelerated because the reaction product sodium decanoate acts as an ionic surfactant, leading to an increased solubility of methyl decanoate in the aqueous phase. The rate can be significantly increased by the addition of surfactants as solubilizers. In nonionic TX-100 solutions, the reaction rate can be increased by a factor of about 100 for a surfactant concentration of 5 wt %. If cationic surfactants are applied, the reaction rate can be further increased due to the electrostatic interaction between the hydroxide ions in solution and the charged head groups of the cationic micelles.

10.
J Nanosci Nanotechnol ; 18(8): 5636-5644, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29458619

RESUMEN

In this paper, a sol-gel derived mesoporous polymeric carbon nitride has been investigated as a photocatalyst for CO2 photocatalytic reduction. Noble-metal Pt nanoparticles were deposited on carbon nitride (sg-CN) in order to investigate the performance of both Pt-sg-CN and sg-CN for photocatalytic CO2 reduction. Physicochemical properties of prepared nanocomposites were comprehensively characterized by using powder XRD, N2 physisorption, UV-Vis DRS, ICP-AES, FTIR, solid-state NMR, SEM, TEM and photoelectrochemical measurements. Compared with pure sg-CN, the resulting Pt-loaded sg-CN (Pt-sg-CN) exhibited significant improvement on the CO2 photocatalytic reduction to CH4 in the presence of water vapor at ambient condition under UV irradiation. 1.5 wt.% Pt-loaded sg-CN (Pt-sg-CN) photocatalyst formed the highest methane yield of 13.9 µmol/gcat. after 18 h of light irradiation, which was almost 2 times and 32 times improvement in comparison to pure sg-CN and commercial TiO2 Evonik P25, respectively. The substantial photocatalytic activity of Pt-sg-CN photocatalyst for the yield product of the CO2 photocatalytic reduction was attributed to the efficient interfacial transfer of photogenerated electrons from sg-CN to Pt due to the lower Fermi level of Pt in the Pt-sg-CN hybrid heterojunctions as also evidenced by photo-electrochemical measurements. This resulted in the reduction of electron-hole pairs recombination for effective spatial charge separation, consequently increasing the photocatalytic efficiency.

11.
Sci Adv ; 10(14): eadn5353, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569024

RESUMEN

Hydrogen chloride is produced as a by-product in industrial processes on a million-ton scale. Since HCl is inherently dangerous, its storage and transport are avoided by, e.g., on-site electrolysis providing H2 and Cl2 which usually requires complex cell designs and PFAS-based membranes. Here we report a complementary approach to safely store 0.61 kilogram HCl per kilogram storage material [NEt3Me]Cl forming the bichloride [NEt3Me][Cl(HCl)n]. Although HCl release is possible from this ionic liquid by heat or vacuum, the bichloride can be used directly to produce base chemicals like vinyl chloride. Alternatively, [NEt3Me][Cl(HCl)n] is electrolyzed under anhydrous conditions using a membrane-free cell to generate H2 and the corresponding chlorination agent [NEt3Me][Cl(Cl2)n], enabling the combination of these ionic liquids for the production of base chemicals.

12.
Phys Chem Chem Phys ; 15(10): 3466-72, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23361354

RESUMEN

A new photoreactor with defined irradiation geometry was developed and tested for the water reduction reaction using carbon nitride ("C(3)N(4)") as a photocatalyst. The hydrogen evolution rate was investigated with a sun simulator (I = 1000 W m(-2)) in two different operation modes: circulation and stirring of the catalyst dispersion. Only in the stirred mode, where shear stress is lower, a stable hydrogen evolution rate of about 0.41 L m(-2) h(-1) is obtained. It is confirmed by experiments with D(2)O that hydrogen is obtained from the water splitting process and not by dehydrogenation of the sacrificial agent. The obtained rate results in an efficiency of <0.1% based on a reference experiment with a photovoltaic-powered electrolysis setup. The change from distilled water to tap or simulated sea water results in a lower hydrogen evolution rate of about 50%.

13.
Polymers (Basel) ; 16(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38201801

RESUMEN

The production of CO2-containing polymers is still very demanding in terms of controlling the synthesis of products with pre-defined CO2 content and molecular weight. An elegant way of synthesising these polymers is via CO2-containing building blocks, such as cyclic ethylene carbonate (cEC), via catalytic ring-opening polymerisation. However, to date, the mechanism of this reaction and control parameters have not been elucidated. In this work, using DFT-metadynamics simulations for exploiting the potential of the polymerisation process, we aim to shed more light on the mechanisms of the interaction between catalysts (in particular, the catalysts K3VO4, K3PO4, and Na2SnO3) and the cEC monomer in the propagation step of the polymeric chain and the occurring CO2 release. Confirming the simulation results via subsequent kinetics measurements indicates that, depending on the catalyst's characteristics, it can be attached reversibly to the polymeric chain during polymerisation, resulting in a defined lifetime of the activated polymer chain. The second anionic oxygen of the catalyst can promote the catalyst's transfer to another electrophilic cEC monomer, terminating the growth of the first chain and initiating the propagation of the new polymer chain. This transfer reaction is an essential step in controlling the molecular weight of the products.

14.
Nat Commun ; 14(1): 991, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813780

RESUMEN

Green hydrogen has been identified as a critical enabler in the global transition to sustainable energy and decarbonized society, but it is still not economically competitive compared to fossil-fuel-based hydrogen. To overcome this limitation, we propose to couple photoelectrochemical (PEC) water splitting with the hydrogenation of chemicals. Here, we evaluate the potential of co-producing hydrogen and methyl succinic acid (MSA) by coupling the hydrogenation of itaconic acid (IA) inside a PEC water splitting device. A negative net energy balance is predicted to be achieved when the device generates only hydrogen, but energy breakeven can already be achieved when a small ratio (~2%) of the generated hydrogen is used in situ for IA-to-MSA conversion. Moreover, the simulated coupled device produces MSA with much lower cumulative energy demand than conventional hydrogenation. Overall, the coupled hydrogenation concept offers an attractive approach to increase the viability of PEC water splitting while at the same time decarbonizing valuable chemical production.

15.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770446

RESUMEN

One-dimensional (1D) core-sheath nanofibers, platinum (Pt)-loaded ceria (CeO2) sheath on mesoporous silica (SiO2) core were fabricated, characterized, and used as catalysts for the reverse water gas shift reaction (RWGS). CeO2 nanofibers (NFs) were first prepared by electrospinning (ES), and then Pt nanoparticles were loaded on the CeO2 NFs using two different deposition methods: wet impregnation and solvothermal. A mesoporous SiO2 sheath layer was then deposited by sol-gel process. The phase composition, structural, and morphological properties of synthesized materials were investigated by scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), nitrogen adsorption/desorption method, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis, and CO2 temperature programmed desorption (CO2-TPD). The results of these characterization techniques revealed that the core-sheath NFs with a core diameter between 100 and 300 nm and a sheath thickness of about 40-100 nm with a Pt loading of around 0.5 wt.% were successfully obtained. The impregnated catalyst, Pt-CeO2 NF@mesoporous SiO2, showed the best catalytic performance with a CO2 conversion of 8.9% at 350 °C, as compared to the sample prepared by the Solvothermal method. More than 99% selectivity of CO was achieved for all core-sheath NF-catalysts.

16.
Nat Commun ; 14(1): 6017, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758705

RESUMEN

With the increasing pressure to decarbonize our society, green hydrogen has been identified as a key element in a future fossil fuel-free energy infrastructure. Solar water splitting through photoelectrochemical approaches is an elegant way to produce green hydrogen, but for low-value products like hydrogen, photoelectrochemical production pathways are difficult to be made economically competitive. A possible solution is to co-produce value-added chemicals. Here, we propose and demonstrate the in situ use of (photo)electrochemically generated H2 for the homogeneous hydrogenation of itaconic acid-a biomass-derived feedstock-to methyl succinic acid. Coupling these two processes offers major advantages in terms of stability and reaction flexibility compared to direct electrochemical hydrogenation, while minimizing the overpotential. An overall conversion of up to ~60% of the produced hydrogen is demonstrated for our coupled process, and a techno-economic assessment of our proposed device further reveals the benefit of coupling solar hydrogen production to a chemical transformation.

17.
RSC Adv ; 13(34): 24038-24052, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577094

RESUMEN

The development of photocatalysts that can utilize the entire solar spectrum is crucial to achieving efficient solar energy conversion. The utility of the benchmark photocatalyst, TiO2, is limited only to the UV region due to its large bandgap. Extending the light harvesting properties across the entire spectrum is paramount to enhancing solar photocatalytic performance. In this work, we developed low bandgap TiO2/conjugated polymer nanostructures which exhibit full spectrum activity for efficient H2 production. The highly mesoporous structure of the nanostructures together with the photosensitizing properties of the conjugated polymer enabled efficient solar light activity. The mesoporous TiO2 nanostructures calcined at 550 °C exhibited a defect-free anatase crystalline phase with traces of brookite and high surface area, resulting in the best performance in hydrogen production (5.34 mmol g-1 h-1) under sunlight simulation. This value is higher not only in comparison to other TiO2-based catalysts but also to other semiconductor materials reported in the literature. Thus, this work provides an effective strategy for the construction of full spectrum active nanostructured catalysts for enhanced solar photocatalytic hydrogen production.

18.
Nat Commun ; 14(1): 7749, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012194

RESUMEN

The oxidative coupling of methane to higher hydrocarbons offers a promising autothermal approach for direct methane conversion, but its progress has been hindered by yield limitations, high temperature requirements, and performance penalties at practical methane partial pressures (~1 atm). In this study, we report a class of Li2CO3-coated mixed rare earth oxides as highly effective redox catalysts for oxidative coupling of methane under a chemical looping scheme. This catalyst achieves a single-pass C2+ yield up to 30.6%, demonstrating stable performance at 700 °C and methane partial pressures up to 1.4 atm. In-situ characterizations and quantum chemistry calculations provide insights into the distinct roles of the mixed oxide core and Li2CO3 shell, as well as the interplay between the Pr oxidation state and active peroxide formation upon Li2CO3 coating. Furthermore, we establish a generalized correlation between Pr4+ content in the mixed lanthanide oxide and hydrocarbons yield, offering a valuable optimization strategy for this class of oxidative coupling of methane redox catalysts.

19.
RSC Adv ; 12(53): 34346-34358, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36545582

RESUMEN

Greener nanocatalyst synthesis is growing in importance, especially when using scarce noble metals such as platinum (Pt) as the active metal. In the synthesis process presented herein, we utilized extract of mangosteen peel as a green reductant and found that it produces Pt nanoparticles (NPs) with high activity. The supported Pt NPs were synthesized via thermos-destabilization of a mangosteen extract microemulsion and subsequently tested with α-methyl styrene (AMS) hydrogenation at SATP. Additionally, we optimized the green synthesis of the supported Pt nanocatalyst (NPs) in terms of their synthesis yield and catalytic activity using the approaches of full factorial design (FFD), central composite design (CCD), and response surface methodology (RSM). In comparing the results of single and multiple optimization, it was found that for the single optimization, the synthesis yield of supported Pt NPs could be increased from their average value of 78.9% to 99.75%, and their activity from 2136 to 15 600 µmol s-1 gPt -1. The results of multiple response optimization to the yield and activity are 81.71% and 8255 µmol s-1 gPt -1, respectively. The optimization approach presented in this study is suitable for similar catalyst synthesis procedures where multivariate responses are sensitive to a number of experimental factors.

20.
RSC Adv ; 12(12): 7055-7065, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35424704

RESUMEN

A previously developed sustainable immobilization concept for photocatalysts based on cellulose as a renewable support material was applied for the photocatalytic hydrogenation of acetophenone (ACP) to 1-phenyl ethanol (PE). Four different TiO2 modifications (P25, P90, PC105, and PC500) were screened for the reaction showing good performance for PC25 and PC500. PC500 was selected for a detailed kinetic study to find the optimal operating conditions, and to obtain a better understanding of the photocatalytic pathway in relation to conventional and transfer hydrogenation. The kinetic data were analyzed using the pseudo-first-order reaction rate law. A complete conversion was obtained for ACP concentrations below 1 mM using a 360 nm filter and argon as the purge gas within 2-3 hours. High oxygen concentrations slow down or prevent the reaction, and wavelengths below 300 nm lead to side-products. By investigating the temperature dependency, an activation energy of 22 kJ mol-1 was determined which is lower than the activation energies for conventional and transfer hydrogenation, because the light activation of the photocatalyst turns the endothermic to an exothermic reaction. PC500 was immobilized onto the cellulose film showing a 37% lower activity that remains almost constant after multiple use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA