Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; 19(18): e2206718, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36737849

RESUMEN

Metal-organic framework (MOF) gel, an emerging subtype of MOF structure, is unique in formation and function; however, its evolutionary process remains elusive. Here, the evolution of a model gel-based MOF, UiO-66(Zr) gel, is explored by demonstrating its sequential sol-gel self-assembly and nonclassical gel-crystal transformation. The control of the sol-gel process enables the observation and characterization of structures in each assembly stage (phase-separation, polycondensation, and hindered-crystallization) and facilitates the preparation of hierarchical materials with giant mesopores. The gelation mechanism is tentatively attributed to the formation of zirconium oligomers. By further utilizing the pre-synthesized gel, the nonclassical gel-crystal transformation is achieved by the modulation in an unconventional manner, which sheds light on crystal intermediates and distinct crystallization motions ("growth and splitting" and "aggregation and fusion"). The overall sol-gel and gel-crystal evolutions of UiO-66(Zr) enrich self-assembly and crystallization domains, inspire the design of functional structures, and demand more in-depth research on the intermediates in the future.

2.
Biometals ; 36(6): 1257-1272, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37344742

RESUMEN

Photodynamic therapy (PDT) is a promising technique for the treatment of various diseases. In this sense, the singlet oxygen quantum yield (Φ∆) is a physical-chemical property that allows to stablish the applicability of a potential photosensitizers (PS) as a drug for PDT. In the herein report, the Φ∆ of three photosensitizers was determined: metal-free tetrahydroxyphenyl porphyrin (THPP), THPP-Zn and the THPP-V metal complexes. Their biological application was also evaluated. Therefore, the in vitro study was carried out to assess their biological activity against Escherichia coli. The metal-porphyrin complexes exhibited highest activities against the bacterial strain Escherichia coli. at the highest concentration (175 µg/mL) and show better activity than the free base ligand (salts and blank solution). Results indicated a relation between Φ∆ and the inhibitory activity against Escherichia coli, thus, whereas higher is the Φ∆, higher is the inhibitory activity. The values of the Φ∆ and the inhibitory activity follows the tendency THPP-Zn > THPP > THPP-V. Furthermore, quantum chemical calculations allowed to gain deep insight into the electronic and optical properties of THPP-Zn macrocycle, which let to verify the most probable energy transfer pathway involved in the singlet oxygen generation.


Asunto(s)
Complejos de Coordinación , Fotoquimioterapia , Porfirinas , Porfirinas/farmacología , Porfirinas/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Complejos de Coordinación/farmacología , Escherichia coli/metabolismo , Zinc/farmacología
3.
Chemphyschem ; 23(24): e202200317, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36031584

RESUMEN

In this research, the adsorption of styrene and styrene oxide, both biomass derivatives, on KTaO3 (001) and LiTaO3 (0001) perovskite-like structures was studied from a theoretical point of view. The study was carried out using density functional theory (DFT) calculations. The adsorption phenomenon was deeply studied by calculating the adsorption energies (Eads ), adsorbate-surface distances (Å) and evaluating the differences of charge density and charge transfer (ΔCT). For complexes adsorbed on KTaO3 (TaO2 , KO and K(OH)2 exposed layers), the highest Eads was found for styrene oxide, attributed to the oxygen reactivity of the epoxy group describing a strong interaction with the surface. However, when evaluating a K(O)2 model, a more favorable interaction of styrene with the surface is observed, resulting in a high Eads of -9.9 eV and a ΔCT of 3.1e. For LiTaO3 , more favorable interactions are found for both adsorbates compared to KTaO3 , evidenced by the higher adsorption energies and charge density differences, particularly for the styrene complex adsorbed on TaO2 exposed layer (Eads : -10.2 eV). For the LiO termination, the surface exposed oxygens are fundamental for the adsorption of styrene and styrene oxide, leading to a considerable structural distortion. The obtained results thus provide understanding of the structural features, surface reactivity and adsorption sites of LiTaO3 and KTaO3 perovskite in the context of a heterogeneous catalytic process, such as the oxidation of styrene.


Asunto(s)
Teoría Cuántica , Estireno , Adsorción , Estireno/química , Teoría Funcional de la Densidad , Oxígeno/química
4.
Chemphyschem ; 23(17): e202200188, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35657683

RESUMEN

The optical properties and transduction mechanisms in three reported optical chemosensors based on crown ether with selectivity turn-on luminescence toward Na+ over K+ , were investigated using Density Functional Theory/Time-Dependent Density Functional Theory (DFT/TD-DFT). The analysis of the structural stability of the conformers enables us to understand the optical properties of the sensors and their selectivity toward Na+ . The UV-Vis absorption and the radiative channels of the adiabatic S1 excited state were assessed. In these reported sensors, the Photoinduced Electron Transfer (PET) from the nitrogen and the oxygen (O-atoms of the substituted N-phenylaza group) lone pairs to fluorophore groups lead to a nonradiative deactivation process in the fluorophore to p-conjugated anilino-1,2,3-triazol ionophore. This Intramolecular Charge Transfer (ICT) deactivation produced the luminescence quenching in the free sensors and K+ /C1 complexes. The Na+ /sensor interaction produced a Chelation Enhanced Fluorescence (CHEF) due to the inhibition of the PET and ICT, which was confirmed via the calculated oscillator strength of the emission process. The K+ /sensor interaction displayed the possibility of PET in C3; however, this fact was inconclusive to affirm the quenching of luminescence, the CHEF in C2 and C3 and the selectivity toward Na+ over K+ in these systems. For this reason, simulation of the absorption and emissions spectra (calculated oscillator strength), calculation of the kinetic parameters (in charge transfers and radiative deactivations process), analysis of the metal-ligand interaction character, and the analysis of the structural stability of the conformers were determinant factors to understand the selectivity and the optical properties of these chemosensors. The results suggest that these theoretical tools can also be used to predict the optical properties and Na+ /K+ selectivity of optical chemosensors.


Asunto(s)
Éteres Corona , Éteres Corona/química , Colorantes Fluorescentes/química , Iones/química , Sodio , Espectrometría de Fluorescencia
5.
Biometals ; 35(1): 159-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34993713

RESUMEN

In this report 5 compounds were synthesized and structural and their photophysical characterization was performed (ΦΔ and Φf). Furthermore, in this in vitro study, their biological activity against Leishmania panamensis was evaluated. The photophysical behavior of these compounds was measured and high ΦΔ and low Φf was observed. Besides, DFT quantum calculations on the electronic structures were performed. Finally, the biological activity was determined by means of the compounds capacity to inhibit the viability of parasites using the MTT assay. The inclusion of the metal ions substantially modified the photophysical and biological properties in comparison with the free metal porphyrin (1). In fact, Zn2+ porphyrin derivative (2) showed a marked decrease of Φf and increase of ΦΔ. In this sense, using TDDFT approaches, a luminescent process for Sn4+ derivative (3) was described, where emissive states involve the ML-LCT transition. So, this led to a decrease in the singlet oxygen production (0.82-0.67). Biological results showed that all compounds inhibit the viability of L. panamensis with high efficiency; the decrease in the viability was greater as the concentration of exposure increased. Finally, under light irradiation the IC50 of L. panamensis against the Zn(II)-porphyrin (2) and V(IV)-porphyrin (5) was lower than the IC50 of the Glucantime control (IC50 = 2.2 and 6.95 µM Vs IC50 = 12.7 µM, respectively). We showed that the use of porphyrin and metalloporphyrin-type photosensitizers with exceptional photophysical properties can be successful in photodynamic therapy (PDT) against L. panamensis, being the diamagnetic ion Zn2+ a candidate for the preparation of metalloporphyrins with high singlet oxygen production.


Asunto(s)
Leishmania , Metaloporfirinas , Fotoquimioterapia , Porfirinas , Metaloporfirinas/química , Metaloporfirinas/farmacología , Metales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Porfirinas/farmacología , Oxígeno Singlete/química , Zinc/farmacología
6.
J Phys Chem A ; 126(39): 7040-7050, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36154179

RESUMEN

The current research shows that the excited-state dynamics of the antenna ligand, both in the interacting system sensor/analyte and in the sensor without analyte, is a safe tool for elucidating the detection principle of the luminescent lanthanide-based metal-organic framework sensors. In this report the detection principle of the luminescence quenching mechanism in two Tb-based MOFs sensors is elucidated. The first system is a luminescent Tb-MOF [Tb(BTTA)1.5(H2O)4.5]n (H2BTTA = 2,5-bis(1H-1,2,4-triazol-1-yl) terephthalic acid) selective to nitrobenzene (NB), labeled as Tb-1. The second system is {[Tb(DPYT)(BPDC)1/2(NO3)]·H2O}n (DPYT = 2,5-di(pyridin-4-yl) terephthalic acid, BPDC = biphenyl-4,4'-dicarboxylic acid), reported as a selective chemical sensor to nitromethane (NM) in situ, labeled as Tb-2. The luminescence quenching of the MOFs is promoted by intermolecular interactions with the analytes that induce destabilization of the T1 electronic state of the linker "antenna", altering thus the sensitization pathways of the Tb atoms. This study demonstrates the value of host-guest interaction simulations and the rate constants of the radiative and nonradiative processes in understanding and elucidating the sensing mechanism in Ln-MOF sensors.

7.
Mol Divers ; 26(5): 2443-2457, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34724138

RESUMEN

A new series of 13 pyrazole-derivative compounds with potential antifungal activity were synthetized with good yields. The series have the (E)-2-((1-(R)-3,5-dimethyl-1H-pyrazol-4-yl)diazenyl)phenol general structure and were characterized by means of X-ray diffraction, UV-Vis, FTIR, 1H-NMR, 13C-NMR, and two-dimensional NMR experiments. This experimental characterization was complemented by DFT simulations. A deep insight regarding molecular reactivity was accomplished employing a conceptual DFT approach. In this sense, dual descriptors were calculated at HF and DFT level of theory and GGV spin-density Fukui functions. The main reactive region within the molecules was mapped through isosurface and condensed representations. Finally, chemical descriptors that have previously shown to be close related to biological activity were compared within the series. Thus, higher values of chemical potential ω and electrophilicity χ obtained for compounds 10, 9, 8, 6 and 7, in this order, suggest that these molecules are the better candidates as biological agents.


Asunto(s)
Antifúngicos , Pirazoles , Antifúngicos/farmacología , Factores Biológicos , Modelos Moleculares , Fenoles , Pirazoles/química , Pirazoles/farmacología
8.
J Comput Chem ; 41(2): 136-146, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646679

RESUMEN

Fluorescent sensors with selectivity and sensitivity to metal ions are an active field in supramolecular chemistry for biochemical, analytical, and environmental problems. Mg2+ is one of the most abundant divalent ions in the cell, and it plays a critical role in many biological processes. Coumarin-based sensors are widely used as desirable fluorophore and binding moieties showing a remarkable sensitivity and fluorometric enhancement for Mg2+ . In this work, density functional theory/multireference configuration interaction (DFT/MRCI) calculations were performed in order to understand the sensing behavior of the organic fluorescent sensor 7-hydroxy-4-methyl-8-((2-(pyridin-2-yl)hydrazono)methyl)-2H-chromen-2-one (PyHC) in ethanol to solvated Mg2+ ions. The computed optical properties reproduce well-reported experimental data. Our results suggest that after photoexcitation of the free PyHC, a photo-induced electron transfer (PET) mechanism may compete with the fluorescence decay to the ground state. In contrast, this PET channel is no longer available in the complex with Mg2+ making the emissive decay more efficient. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Cumarinas/química , Teoría Funcional de la Densidad , Colorantes Fluorescentes/química , Magnesio/análisis , Estructura Molecular
9.
J Comput Chem ; 41(22): 1956-1964, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32559320

RESUMEN

A theoretical procedure, via quantum chemical computations, to elucidate the detection principle of the turn-off luminescence mechanism of an Eu-based Metal-Organic Framework sensor (Eu-MOF) selective to aniline, is accomplished. The energy transfer channels that take place in the Eu-MOF, as well as understanding the luminescence quenching by aniline, were investigated using the well-known and accurate multiconfigurational ab initio methods along with sTD-DFT. Based on multireference calculations, the sensitization pathway from the ligand (antenna) to the lanthanide was assessed in detail, that is, intersystem crossing (ISC) from the S1 to the T1 state of the ligand, with subsequent energy transfer to the 5 D0 state of Eu3+ . Finally, emission from the 5 D0 state to the 7 FJ state is clearly evidenced. Otherwise, the interaction of Eu-MOF with aniline produces a mixture of the electronic states of both systems, where molecular orbitals on aniline now appear in the active space. Consequently, a stabilization of the T1 state of the antenna is observed, blocking the energy transfer to the 5 D0 state of Eu3+ , leading to a non-emissive deactivation. Finally, in this paper, it was demonstrated that the host-guest interactions, which are not taken frequently into account by previous reports, and the employment of high-level theoretical approaches are imperative to raise new concepts that explain the sensing mechanism associated to chemical sensors.

10.
J Phys Chem A ; 124(32): 6493-6503, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32635732

RESUMEN

We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques. The interaction of sensors with these metal ions induced a new absorption band with a hypsochromic shift to the characteristic signal of the free sensors. A theoretical study via time-dependent density functional theory (TD-DFT) was performed. This method has enabled us to reproduce the hypsochromic shift in the maximum UV-vis absorption band and explain the selective sensing of the ions. For all of the systems studied, the absorption band is characterized by a π → π* transition centered in the ligand. Instead of Ni2+ and Cu2+ ions, the transition is set toward the σ* molecular orbital with a strong contribution of the 3dx2-y2 transition (π → 3dx2-y2). These absorptions imply a ligand-to-metal charge transfer (LMCT) mechanism that results in the hypsochromic shift in the absorption band of these systems.

11.
J Phys Chem A ; 123(32): 6970-6977, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31318547

RESUMEN

A methodology that allows us to explain the experimental behavior of a turn-on luminescent chemosensor is proposed and verified in 1-[(1H-1,2,4-triazole-3-ylimino)-methyl]-naphthalene-2-ol] (L1), selective to Al3+ cations. This sensor increases its emission when interacting with ions upon excitation at 442 nm, which is denoted as the chelation-enhanced fluorescence effect. Photoinduced electron transfer is responsible for the fluorescence quenching in L1 at 335 nm, in Ni2+/L1 at 385 nm, and in Zn2+/L1 at 378 nm. In Ni2+/L, ligand-to-metal charge transfer (LMCT), from the molecular orbital of the ligand to the Ni 3dx2 - y2 orbital, can contribute to the quenching of fluorescence. Based on oscillator strength, the highest luminescence intensity of L1 at 401 nm and that of Al3+/L1 at 494 nm in relation to the others is evidenced. The consideration of the relative energies of the excited states and the calculation of the rate and lifetime of the electron transfer deactivation are necessary to get a good description of the sensor.

12.
J Comput Chem ; 39(11): 685-698, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29282748

RESUMEN

The possibility of dye charge recombination in DSSCs remains a challenge for the field. This consists of: (a) back-transfer from the TiO2 to the oxidized dye and (b) intermolecular electron transfer between dyes. The latter is attributed to dye aggregation due to dimeric conformations. This leads to poor electron injection which decreases the photocurrent conversion efficiency. Most organic sensitizers are characterized by an Acceptor-Bridge-Donor (A-Bridge-D) arrangement that is commonly employed to provide charge separation and, therefore, lowering the unwanted back-transfer. Here, we address the intermolecular electron transfer by studying the dimerization and photovoltaic performance of a group of A-Bridge-D structured dyes. Specifically, eight famous sulfur containing π-bridges were analyzed (A and D remained fixed). Through quantum mechanical and molecular dynamics approaches, it was found that the formation of weakly stabilized dimers is allowed. The dyes with covalently bonded and fused thiophene rings as Bridges, 6d and 7d as well as 8d with a fluorene, would present high aggregation and, therefore, high probability of recombination processes. Conversely, using TiO2 cluster and surface models, delineated the shortest bridges to improve the adsorption energy and the stability of the system. Finally, the elongation of the bridge up to 2 and 3 units and their photovoltaic parameters were studied. These results showed that all the sensitizers are able to provide similar photocurrent outcomes, regardless of whether the bridge is elongated. © 2017 Wiley Periodicals, Inc.

13.
Langmuir ; 34(32): 9402-9409, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30021439

RESUMEN

Plasmonic nanoparticles, especially gold ones, have been widely employed as photosensitizers in photoelectrovoltaic or photocatalytic systems. To improve the system's performance, a greater interaction of the nanoparticles with the semiconductor, generally TiO2, is desired. Moreover, this performance is enhanced when an efficient covering of TiO2 surface by the sensitizer is achieved. The Brust-Schiffrin-like methods are of the most employed approaches for nanoparticles synthesis. In a traditional approach, the reduction of the gold precursor is performed in the presence of a stabilizer (typically a thiol molecule) free in solution. A second step in which the obtained nanoparticles are anchored to the semiconductor surface is necessary in the case of photosensitive applications. Drawbacks like steric hindrance turn more difficult the covering of the semiconductor's surface by nanoparticles. In this paper, we report a variation of this methodology, where the linker is previously anchored to the TiO2 nanoparticles surface. The resulting system is employed as the stabilizer in the gold reduction step. This strategy is carried out in aqueous media in two simple steps. A great covering of the titania surface by gold nanoparticles is achieved in all cases and the gold nanoparticles in the resulting nanoaggregate might be useful for photoelectrovoltaic or photocatalytic applications.

14.
Phys Chem Chem Phys ; 19(46): 31479-31486, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29159340

RESUMEN

The bonding properties of phosphazenes and spirocyclophosphazenes containing tris-2,2'-dioxybiphenyl groups and their derivatives were investigated by means of different computational techniques. Electronic delocalization and phosphazene-ligand bonding were studied in terms of natural bond orbitals (NBOs) and energy decomposition (EDA) analysis in combination with the natural orbital for chemical valence (NOCV), which showed the dependency of the charge transfer with the electron delocalization. TD-DFT calculations were employed to study the absorption profile of the studied molecules and to contrast the redshift and change in intensities of the λmax. An assessment of second-order stabilization energies, ΔE2, within the NBO analysis revealed clear differences between the cyclic-phosphazene arrays. The EDA-NOCV showed that the ligand-phosphazene charge transfer is stronger in phosphazene with amine substituents (4c), which is due to the donor character of the substituent over the phenyl ring. The NBO analysis confirmed either the inflow or outflow of charge due to the influence of the electron donor or electron withdrawing groups.

15.
Phys Chem Chem Phys ; 18(35): 24239-51, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27530076

RESUMEN

Dye-sensitized solar cells (DSSCs) are devices that convert light to electrical energy. Nowadays, researchers have focused on the understanding of the performance of dyes in solar cells. In this way, new efficient dyes have been obtained which can act as efficient light-harvesting compounds where the combination and the balance of acceptor(A)-bridge-donor(D) architectures confer suitable attributes and properties to the dye. Herein, we have carried out a DFT study on the optical and electronic properties of eight different A motifs and their influence on the electron photo-injection (PI) mechanisms through type I (indirect) or type II (direct) pathways in A-bridge-D dyes in DSSCs. The models consisted of thiophene as a bridge and triphenylamine as a D anchored to a TiO2 anatase cluster. All geometry optimizations were calculated using the B3LYP, CAM-B3LYP and BHandHLYP functionals combined with the 6-31G(d,p) basis set for C, H, N, O and S and the LANL2DZ pseudopotential for Ti atoms. Most of the A dyes display optoelectronic properties consistent with a type-I (indirect) mechanism except for the A5 dye where the results suggest a type-II (direct) PI pathway. In addition, molecular dynamics (MD) simulations have been carried out in order to describe the formation of dye dimers and analyze the stability of the aggregates due to intermolecular interactions. The observed trends indicate that dyes with A2 and A5 anchoring groups have less tendency to dimerize due to weaker intermolecular interactions resulting in less stable dimer complexes. Specifically, we found that the A motif influences the PI by a dye and the dimerization profiles.

16.
J Phys Chem A ; 120(9): 1613-24, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26900717

RESUMEN

The combination and balance of acceptor(A)-bridge-donor(D) architecture of molecules confer suitable attributes and/or properties to act as efficient light-harvesting and sensitizers in dye sensitized solar cells (DSSCs). An important process in a DSSC performance is the electron photoinjection (PI) mechanism which can take place either via type I (indirect), that consists in injecting from the excited state of the dye to the semiconductor, or type II (direct), where the PI is from the ground state of the dye to the semiconductor upon photoexcitation. Here, we present a computational study about the role of the donor motif in the PI mechanisms displayed from a family of 11 A-bridge-D structured dyes to a (TiO2)15 anatase cluster. To this end, different donor motifs (D1-D11) were evaluated while the A and bridge motifs remained the same. All the computations were carried out within the DFT framework, using the B3LYP, PW91, PBE, M06L and CAM-B3LYP functionals. The 6-31G(d) basis set was employed for nonmetallic atoms and the LANL2DZ pseudopotential for Ti atoms. The solvation effects were incorporated using the polarized continuum model (PCM) for acetonitrile. As benchmark systems, alizarin and naphthalenediol dyes were analyzed, as they are known to undergo Type I and Type II PI pathways in DSSCs, respectively. Donors in the studied family of dyes could influence to drive Type I or II PI since it was found that D2 could show some Type II PI route, showing a new absorption band, although with CAM-B3LYP this shows a very low oscillator strength, while the remaining dyes behave according to Type I photoinjectors. Finally, the photovoltaic parameters that govern the light absorption process were evaluated, as the use of these criteria could be applied to predict the efficiency of the studied dyes in DSSCs devices.

17.
J Am Chem Soc ; 136(3): 1034-46, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24367914

RESUMEN

Characterization of the redox properties of TiO2 interfaces sensitized to visible light by a series of cyclometalated ruthenium polypyridyl compounds containing both a terpyridyl ligand with three carboxylic acid/carboxylate or methyl ester groups for surface binding and a tridentate cyclometalated ligand with a conjugated triarylamine (NAr3) donor group is described. Spectroelectrochemical studies revealed non-Nernstian behavior with nonideality factors of 1.37 ± 0.08 for the Ru(III/II) couple and 1.15 ± 0.09 for the NAr3(•+/0) couple. Pulsed light excitation of the sensitized thin films resulted in rapid excited-state injection (k(inj) > 10(8) s(-1)) and in some cases hole transfer to NAr3 [TiO2(e(-))/Ru(III)-NAr3 → TiO2(e(-))/Ru(II)-NAr3(•+)]. The rate constants for charge recombination [TiO2(e(-))/Ru(III)-NAr3 → TiO2/Ru(II)-NAr3 or TiO2(e(-))/Ru(II)-NAr3(•+) → TiO2/Ru(II)-NAr3] were insensitive to the identity of the cyclometalated compound, while the open-circuit photovoltage was significantly larger for the compound with the highest quantum yield for hole transfer, behavior attributed to a larger dipole moment change (Δµ = 7.7 D). Visible-light excitation under conditions where the Ru(III) centers were oxidized resulted in injection into TiO2 [TiO2/Ru(III)-NAr3 + hν → TiO2(e(-))/Ru(III)-NAr3(•+)] followed by rapid back interfacial electron transfer to another oxidized compound that had not undergone excited-state injection [TiO2(e(-))/Ru(III)-NAr3 → TiO2/Ru(II)-NAr3]. The net effect was the photogeneration of equal numbers of fully reduced and fully oxidized compounds. Lateral intermolecular hole hopping (TiO2/Ru(II)-NAr3 + TiO2/Ru(III)-NAr3(•+) → 2TiO2/Ru(III)-NAr3) was observed spectroscopically and was modeled by Monte Carlo simulations that revealed an effective hole hopping rate of (130 ns)(-1).


Asunto(s)
Titanio/química , Absorción , Aminas/química , Transporte de Electrón , Método de Montecarlo , Teoría Cuántica , Propiedades de Superficie
18.
Dalton Trans ; 53(33): 14028-14036, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105635

RESUMEN

A novel MOF named [Zn2(L)(DMF)] was synthesized using solvothermal methods from the reaction of the new linker (4,4',4''-(4,4',4''-(benzene-1,3,5-triyltris(methylene))tris(3,5-dimethyl-1H-pyrazole-4,1-diyl))tribenzoic acid) and Zn(NO3)2·6H2O. This new MOF was characterized by means of different techniques: powder X-ray diffraction, N2 adsorption and desorption isotherms, thermogravimetric analysis, and scanning electron microscopy. Furthermore, suitable crystals were obtained, which allowed us to perform the X-Ray structure determination of this MOF. The capability of these new MOF to adsorb CO2 at different temperatures was measured and its isosteric enthalpy of adsorption was calculated. The novel MOF shows an uncommon node composed of a Zn3(-COO)6(DMF)2, and the asymmetric unit contains one crystallographically independent linker, one DMF molecule, and two Zn atoms. The [Zn2(L)(DMF)] MOF is a microporous material with high crystallinity and stability up to 250 °C. The multiple nitrogenated pyrazole linkers in its framework enhance its CO2 adsorption capabilities. This material exhibits a low CO2 isosteric enthalpy of adsorption (Hads), comparable to previously reported values for similar nitrogenated materials. All the observed CO2 adsorption capacities were further supported by DFT calculations.

19.
Dalton Trans ; 53(39): 16397-16406, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39320445

RESUMEN

In the context of climate change, it is of utmost importance to replace the use of fossil fuels as raw material in areas of industrial interest, for example, in the production of chemical inputs. In this context, a viable option is biomass, since by subjecting it to chemical processes such as pyrolysis, it is possible to obtain platform molecules that are the basis for the generation of value-added chemical products. Acetals are molecules obtained from biomass derivatives, which have various applications in cosmetic chemistry, in the pharmaceutical industry as intermediates or final compounds, food additives, among others. Different catalysts have been used in the acetalization reaction, including MOFs, which have the advantage of being porous materials with high surface area values. The large surface area translates into a greater number of catalytically active sites available for the reaction. Among the MOFs that have been used for this purpose is MOF-808, which is characterized by having a lower number of ligands attached to its metal cluster, therefore, it has a greater exposure of the metals that make up its structure. In this context, the work carried out studied the catalytic performance of MOF-808 when its Zr(IV) metal centers are replaced by Hf(IV) and Ce(IV) atoms in the acetalization reaction of benzaldehyde with methanol. The MOFs obtained by solvothermal synthesis were characterized by powder X-ray diffraction, N2 adsorption and desorption, FT-IR spectroscopy, acid-base potentiometric titration, XPS and thermogravimetric analysis. The results of the catalysis indicate that the MOF with the best performance was MOF-808-Ce, which achieved conversions greater than 80% in a period of ten minutes. MOF-808-Ce exhibits a higher number of defects and therefore a higher availability of catalytic sites for the reaction to occur, which explains the better performance. Finally, the performance of MOF-808 in the acetalization of benzaldehyde with methanol was also supported by density functional theory (DFT) calculations.

20.
Dalton Trans ; 53(25): 10486-10498, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38840533

RESUMEN

The increasing CO2 emissions and their direct impact on climate change due to the greenhouse effect are environmental issues that must be solved as soon as possible. Metal-organic frameworks (MOFs) are one class of crystalline adsorbent materials that are thought to have enormous potential in CO2 capture applications. In this research, the effect of changing the metal center between Zr(IV), Ce(IV), and Hf(IV), and the linker between BDC and PDC has been fully studied. Thus, the six UiO-66 isoreticular derivatives have been synthesized and characterized by FTIR, PXRD, TGA, and N2 adsorption. We also report the BET surface area, CO2 adsorption capacities, kinetics, and the adsorption isosteric heat (Qst) of the UiO-66 derivatives mentioned family. The CO2 adsorption kinetics were evaluated using pseudo-first order, pseudo-second order, Avrami's kinetic models, and the rate-limiting step with Boyd's film diffusion, interparticle diffusion, and intraparticle diffusion models. The isosteric heats of CO2 adsorption using various MOFs are in the range 20-65 kJ mol-1 observing differences in adsorption capacities between 1.15 and 4.72 mmol g-1 at different temperatures due to the electrostatic interactions between CO2 and extra-framework metal ions. The isosteric heat of adsorption calculation in this report, which accounts for the unexpectedly high heat released from Zr-UiO-66-PDC, is finally represented as an increase in the interaction of CO2 with the PDC linker and an increase in Qst with defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA