Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 12(9): e1005913, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27683080

RESUMEN

Current understanding of adaptive immune, particularly T cell, responses to human rhinoviruses (RV) is limited. Memory T cells are thought to be of a primarily T helper 1 type, but both T helper 1 and T helper 2 memory cells have been described, and heightened T helper 2/ lessened T helper 1 responses have been associated with increased RV-induced asthma exacerbation severity. We examined the contribution of T helper 1 cells to RV-induced airways inflammation using mice deficient in the transcription factor T-Box Expressed In T Cells (Tbet), a critical controller of T helper 1 cell differentiation. Using flow cytometry we showed that Tbet deficient mice lacked the T helper 1 response of wild type mice and instead developed mixed T helper 2/T helper 17 responses to RV infection, evidenced by increased numbers of GATA binding protein 3 (GATA-3) and RAR-related orphan receptor gamma t (RORγt), and interleukin-13 and interleukin-17A expressing CD4+ T cells in the lung. Forkhead box P3 (FOXP3) and interleukin-10 expressing T cell numbers were unaffected. Tbet deficient mice also displayed deficiencies in lung Natural Killer, Natural Killer T cell and γδT cell responses, and serum neutralising antibody responses. Tbet deficient mice exhibited pronounced airways eosinophilia and mucus production in response to RV infection that, by utilising a CD4+ cell depleting antibody, were found to be T helper cell dependent. RV induction of T helper 2 and T helper 17 responses may therefore have an important role in directly driving features of allergic airways disease such as eosinophilia and mucus hypersecretion during asthma exacerbations.

2.
Bioanalysis ; 8(24): 2581-2593, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27884079

RESUMEN

Determination of concentration-time profiles in cynomolgus monkeys of a therapeutic monoclonal antibody against a soluble target revealed a substantial discrepancy between a generic anti-human IgG capture/detection and target bridging assay with the target bridging assay leading to dose- and time-dependent underquantification of drug concentrations, lack of parallelism and subsequently different pharmacokinetic parameters. In contrast, plasma levels derived from a target capture and an anti-idiotypic antibody bridging assay were in close concordance with the generic assay and demonstrated parallelism with high precision across several dilutions. The results provide a practical attempt to overcome nonparallelism by employing alternative assay formats utilizing tailored assay reagent combinations in order to obtain unbiased pharmacokinetic data.


Asunto(s)
Anticuerpos Monoclonales/sangre , Animales , Anticuerpos Antiidiotipos/sangre , Anticuerpos Antiidiotipos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Área Bajo la Curva , Ensayo de Inmunoadsorción Enzimática , Femenino , Semivida , Ligandos , Límite de Detección , Macaca fascicularis , Masculino , Efecto Placebo , Curva ROC , Conejos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA