RESUMEN
We report on the first observation of the unbound proton-rich nucleus 15Ne. Its ground state and first excited state were populated in two-neutron knockout reactions from a beam of 500 MeV/u 17Ne. The 15Ne ground state is found to be unbound by 2.522(66) MeV. The decay proceeds directly to 13O with simultaneous two-proton emission. No evidence for sequential decay via the energetically allowed 2- and 1- states in 14F is observed. The 15Ne ground state is shown to have a strong configuration with two protons in the (sd) shell around 13O with a 63(5)% (1s1/2)2 component.
RESUMEN
The coupling between bound quantum states and those in the continuum is of high theoretical interest. Experimental studies of bound drip-line nuclei provide ideal testing grounds for such investigations since they, due to the feeble binding energy of their valence particles, are easy to excite into the continuum. In this Letter, continuum states in the heaviest particle-stable Be isotope, 14Be, are studied by employing the method of inelastic proton scattering in inverse kinematics. New continuum states are found at excitation energies E*=3.54(16) MeV and E*=5.25(19) MeV. The structure of the earlier known 2(1)+ state at 1.54(13) MeV was confirmed with a predominantly (0d5/2)2 configuration while there is very clear evidence that the 2(2)+ state has a predominant (1s1/2, 0d5/2) structure with a preferential three-body decay mechanism. The region at about 7 MeV excitation shows distinct features of sequential neutron decay via intermediate states in 13Be. This demonstrates that the increasing availability of energetic beams of exotic nuclei opens up new vistas for experiments leading towards a new understanding of the interplay between bound and continuum states.
RESUMEN
The "island of inversion" nucleus 32 Mg has been studied by a (t, p) two neutron transfer reaction in inverse kinematics at REX-ISOLDE. The shape coexistent excited 0+ state in 32 Mg has been identified by the characteristic angular distribution of the protons of the Δ L=0 transfer. The excitation energy of 1058 keV is much lower than predicted by any theoretical model. The low γ-ray intensity observed for the decay of this 0+ state indicates a lifetime of more than 10 ns. Deduced spectroscopic amplitudes are compared with occupation numbers from shell-model calculations.
RESUMEN
Inclusive inelastic electron scattering off the deuteron under 180 degrees has been studied at the S-DALINAC close to the breakup threshold at momentum transfers q=0.27 fm;{-1} and 0.74 fm;{-1} with good energy resolution sufficient to map in detail the spin flip M1 response, which governs the starting reaction pn-->dgamma of big-bang nucleosynthesis over most of the relevant temperature region. Results from potential model calculations and (for q=0.27 fm;{-1}) from pionless nuclear effective field theory are in excellent agreement with the data.
RESUMEN
Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, 80Zn is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.
RESUMEN
The 48Ca(e,e(')n) reaction has been investigated for excitation energies 11-25 MeV and momentum transfers 0.22-0.43 fm(-1) at the superconducting Darmstadt electron linear accelerator S-DALINAC. Electric dipole and quadrupole plus monopole strength distributions are extracted from a multipole decomposition of the spectra. Their fragmented structure is described by microscopic calculations allowing for coupling of the basic particle-hole excitations to more complex configurations. Comparison of the excitation spectrum of the residual nucleus 47Ca with statistical model calculations reveals a 39(5)% contribution of direct decay to the damping of the giant dipole resonance.
RESUMEN
Deuteron breakup has been studied in a 2H(e,e' p) coincidence experiment at low momentum transfer and for energies close to threshold. The longitudinal-plus-transverse ( L+T) and longitudinal-transverse ( LT) interference cross sections are deduced. Nonrelativistic calculations based on the Bonn potential and including leading order relativistic contributions, meson exchange currents, and isobar configurations describe the ( L+T) data well. Surprisingly, large deviations of 30% to 45% are observed for the LT contribution.
RESUMEN
The one-proton knockout channel from 6He (240 MeV/u) impinging on a carbon target has been investigated. The triton fragments originating from this channel were detected in coincidence with the two neutrons. A broad structure, peaked at 3 MeV above the t+2n threshold, is observed in the t+n+n-relative energy spectrum. It is shown that this structure is mainly due to a I(pi)=1/2(+) resonance as expected for the 5H ground state, and from the observed angular and energy correlations, being used for the first time in 5H studies, that the neutrons to a large extent occupy the p shell.
RESUMEN
Low-lying resonance states in 7He(6He+n), formed after fragmentation reactions of a 227 MeV/nucleon 8He beam on a carbon target, have been studied. Coincidences between 6He nuclei and neutrons, corresponding to the one-neutron knockout channel in 8He, were selected. The relative energy spectrum in the 6He+n system shows a structure, which is interpreted as the 7He ( Ipi = 3/2(-)) ground state, unbound with 0.43(2) MeV relative to the 6He+n system and a width of Gamma = 0.15(8) MeV overlapping with an excited ( Ipi = 1/2(-)) state observed at 1.0(1) MeV with a width of Gamma = 0.75(8) MeV.
RESUMEN
Breakup reactions were used to study the ground-state configuration of the neutron-rich isotope 23O. The 22O fragments produced in one-nucleon removal from 23O at 938 MeV/nucleon in a carbon target were detected in coincidence with deexciting gamma rays. The widths of the longitudinal momentum distributions of the 22O fragments and the one-neutron removal cross sections were interpreted in the framework of a simple theoretical model which favors the assignment of Ipi = 1/2+ to the 23O ground state.