RESUMEN
Limited studies in humans and in animal models have investigated the neurotoxic risks related to a gestational exposure to diesel exhaust particles (DEP) on the embryonic brain, especially those regarding monoaminergic systems linked to neurocognitive disorders. We previously showed that exposure to DEP alters monoaminergic neurotransmission in fetal olfactory bulbs and modifies tissue morphology along with behavioral consequences at birth in a rabbit model. Given the anatomical and functional connections between olfactory and central brain structures, we further characterized their impacts in brain regions associated with monoaminergic neurotransmission. At gestational day 28 (GD28), fetal rabbit brains were collected from dams exposed by nose-only to either a clean air or filtered DEP for 2 h/day, 5 days/week, from GD3 to GD27. HPLC dosage and histochemical analyses of the main monoaminergic systems, i.e., dopamine (DA), noradrenaline (NA), and serotonin (5-HT) and their metabolites were conducted in microdissected fetal brain regions. DEP exposure increased the level of DA and decreased the dopaminergic metabolites ratios in the prefrontal cortex (PFC), together with sex-specific alterations in the hippocampus (Hp). In addition, HVA level was increased in the temporal cortex (TCx). Serotonin and 5-HIAA levels were decreased in the fetal Hp. However, DEP exposure did not significantly modify NA levels, tyrosine hydroxylase, tryptophan hydroxylase or AChE enzymatic activity in fetal brain. Exposure to DEP during fetal life results in dopaminergic and serotonergic changes in critical brain regions that might lead to detrimental potential short-term neural disturbances as precursors of long-term neurocognitive consequences.
Asunto(s)
Encéfalo/efectos de los fármacos , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Emisiones de Vehículos/toxicidad , Animales , Encéfalo/embriología , Dopamina/metabolismo , Femenino , Masculino , Norepinefrina/metabolismo , Embarazo , Conejos , Serotonina/metabolismo , Factores Sexuales , Transmisión Sináptica/efectos de los fármacos , Factores de TiempoRESUMEN
BACKGROUND: Airborne pollution, especially from diesel exhaust (DE), is known to have a negative effect on the central nervous system in exposed human populations. However, the consequences of gestational exposure to DE on the fetal brain remain poorly explored, with various effects depending on the conditions of exposure, as well as little information on early developmental stages. We investigated the short-term effects of indirect DE exposure throughout gestation on the developing brain using a rabbit model. We analyzed fetal olfactory tissues at the end of gestation and tested behaviors relevant to pups' survival at birth. Pregnant dams were exposed by nose-only inhalation to either clean air or DE with a content of particles (DEP) adjusted to 1 mg/m3 by diluting engine exhaust, for 2 h/day, 5 days/week, from gestational day 3 (GD3) to day 27 (GD27). At GD28, fetal olfactory mucosa, olfactory bulbs and whole brains were collected for anatomical and neurochemical measurements. At postnatal day 2 (PND2), pups born from another group of exposed or control female were examined for their odor-guided behavior in response to the presentation of the rabbit mammary pheromone 2-methyl-3-butyn-2-ol (2MB2). RESULTS: At GD28, nano-sized particles were observed in cilia and cytoplasm of the olfactory sensory neurons in the olfactory mucosa and in the cytoplasm of periglomerular cells in the olfactory bulbs of exposed fetuses. Moreover, cellular and axonal hypertrophies were observed throughout olfactory tissues. Concomitantly, fetal serotoninergic and dopaminergic systems were affected in the olfactory bulbs. Moreover, the neuromodulatory homeostasis was disturbed in a sex-dependent manner in olfactory tissues. At birth, the olfactory sensitivity to 2MB2 was reduced in exposed PND2 pups. CONCLUSION: Gestational exposure to DE alters olfactory tissues and affects monoaminergic neurotransmission in fetuses' olfactory bulbs, resulting in an alteration of olfactory-based behaviors at birth. Considering the anatomical and functional continuum between the olfactory system and other brain structures, and due to the importance of monoamine neurotransmission in the plasticity of neural circuits, such alterations could participate to disturbances in higher integrative structures, with possible long-term neurobehavioral consequences.
Asunto(s)
Contaminantes Atmosféricos/toxicidad , Conducta Animal/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/farmacocinética , Animales , Animales Recién Nacidos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Exposición por Inhalación , Masculino , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/ultraestructura , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Conejos , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Factores Sexuales , Transmisión Sináptica/efectos de los fármacos , Distribución TisularRESUMEN
Urine and plasma have been used to date for the biomonitoring of exposure to pollutants and are still the preferred fluids for this purpose; however, these fluids mainly provide information on the short term and may present a high level of variability regarding pesticide concentrations, especially for nonpersistent compounds. Hair analysis may provide information about chronic exposure that is averaged over several months; therefore, this method has been proposed as an alternative to solely relying on these fluids. Although the possibility of detecting pesticides in hair has been demonstrated over the past few years, the unknown linkage between exposure and pesticides concentration in hair has limited the recognition of this matrix as a relevant tool for assessing human exposure. Based on a rat model in which there was controlled exposure to a mixture of pesticides composed of lindane, ß-hexachlorocyclohexane, ß-endosulfan, p,p'-DDT, p,p'-DDE, dieldrin, pentachlorophenol, diazinon, chlorpyrifos, cyhalothrin, permethrin, cypermethrin, propiconazole, fipronil, oxadiazon, diflufenican, trifluralin, carbofuran, and propoxur, the current work demonstrates the association between exposure intensity and resulting pesticide concentration in hair. We also compared the results obtained from a hair analysis to urine and plasma collected from the same rats. Hair, blood, and urine were collected from rats submitted to 90-day exposure by gavage to the aforementioned mixture of common pesticides at different levels. We observed a linear relationship between exposure intensity and the concentration of pesticides in the rats' hair (R Pearson 0.453-0.978, p < 0.01). A comparison with results from urine and plasma samples demonstrated the relevance of hair analysis and, for many chemicals, its superiority over using fluids for differentiating animals from different groups and for re-attributing animals to their correct groups of exposure based on pesticide concentrations in the matrix. Therefore, this study strongly supports hair analysis as a reliable tool to be used during epidemiological studies to investigate exposure-associated adverse health effects.
Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Cabello/química , Plaguicidas/análisis , Animales , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/farmacocinética , Femenino , Plaguicidas/farmacocinética , Ratas , Ratas Long-Evans , Reproducibilidad de los ResultadosRESUMEN
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 µg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
RESUMEN
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and 209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
RESUMEN
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
RESUMEN
Benzo[a]pyrene (B[a]P) is a small molecular weight carcinogen and the prototype of polycyclic aromatic hydrocarbons (PAHs). While these compounds are primarily known for their carcinogenicity, B[a]P and its metabolites are also neurotoxic for mammalian species. To develop a prophylactic immune strategy against detrimental effects of B[a]P, female Balb/c mice immunized with a B[a]P-diphtheria toxoid (B[a]P-DT) conjugate vaccine were sub-acutely exposed to 2mg/kg B[a]P and behavioral performances were monitored in tests related to learning and memory, anxiety and motor coordination. mRNA expression of the NMDA receptor (NR1, 2A and 2B subunits) involved in the above behavioral functions was measured in 5 brain regions. B[a]P induced NMDA1 expression in three (hippocampus, amygdala and cerebellum) of five brain regions investigated, and modulated NMDA2 in two of the five brain regions (frontal cortex and cerebellum). Each one of these B[a]P-effects was reversed in mice that were immunized against this PAH, with measurable consequences on behavior such as anxiety, short term learning and memory. Thus active immunization against B[a]P with a B[a]P-DT conjugate vaccine had a protective effect and attenuated the pharmacological and neurotoxic effects even of high concentrations of B[a]P.
Asunto(s)
Benzo(a)pireno/toxicidad , Toxoide Diftérico/uso terapéutico , Contaminantes Ambientales/efectos adversos , Inmunotoxinas/uso terapéutico , Síndromes de Neurotoxicidad/prevención & control , Animales , Ansiedad/inducido químicamente , Ansiedad/prevención & control , Ansiedad/psicología , Benzo(a)pireno/farmacocinética , Peso Corporal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Toxoide Diftérico/química , Femenino , Inmunización , Inmunotoxinas/química , Aprendizaje por Laberinto/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Actividad Motora/efectos de los fármacos , Síndromes de Neurotoxicidad/inmunología , Ovalbúmina , Desempeño Psicomotor/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de N-Metil-D-Aspartato/biosíntesisRESUMEN
There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.
Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Masculino , Animales , Ratas , Femenino , Embarazo , Cromatografía Liquida , Ratas Wistar , Placenta/metabolismo , Espectrometría de Masas en Tándem , Hidrocarburos Bromados/toxicidad , Hidrocarburos Bromados/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Cerebelo/metabolismo , Epigénesis GenéticaRESUMEN
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 µg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
RESUMEN
Evidence is now growing that exposure to environmental pollutants during the critical early-life period of brain development may contribute to the emergence of Autism Spectrum Disorders (ASD). This study seeks to compare the developmental neurotoxicity of the α-isomer of hexabromocyclododecane (α-HBCDD), a persistent brominated flame retardant, to the valproic acid (VPA) model of ASD in rodents. Pregnant Wistar rats were divided into three groups: control, α-HBCDD (100 ng/kg/day p.o., GD0-PND21) and VPA (600 mg/kg i.p., GD12). Male offspring were tested for their neuromotor development from PND2-21. At PND21, brain functionality was assessed by measuring cytochrome oxidase activity (CO). Modifications in neuroglia and synaptic plasticity were evaluated in the cortex. Similar subtle behavioural changes related to neuromotor maturation and noise reaction were observed in both treated groups. At PND21, a reduction in CO activity was measured in the VPA group only, in specific areas including auditory nuclei, visual cortex, cingulate and frontal cortices. At the same age, α-HBCDD pointed out significant overexpression of cortical markers of synaptic plasticity while both treated groups showed a significant under expression of astrocyte proteins (S100-ß and GFAP). Early-life exposure to a low dose of α-HBCDD may trigger neurobehavioural alterations in line with ASD.
RESUMEN
Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.
Asunto(s)
Disruptores Endocrinos , Efectos Tardíos de la Exposición Prenatal , Animales , Compuestos de Bencidrilo/toxicidad , Encéfalo , Disruptores Endocrinos/toxicidad , Femenino , Humanos , Exposición Materna/efectos adversos , Ratones , Fenoles/toxicidad , Embarazo , OvinosRESUMEN
An efficient and selective method for the quantitative determination of polycyclic aromatic hydrocarbons (PAHs) and their monohydroxylated metabolites (OH-PAHs) in rat brain tissue using gas chromatography tandem (triple quadrupole) mass spectrometry (GC-MS/MS) was developed and validated. The list of molecules investigated comprised the 16 PAHs from the US-EPA list and 53 of their OH-PAHs. Brain extract was submitted to enzymatic hydrolysis, followed by liquid-liquid extraction, and then purified by solid-phase extraction. Limits of quantification ranged from 0.6 to 29 pg/mg and from 0.5 to 30 pg/mg for PAHs and OH-PAHs respectively. The analysis of rat brain samples exposed to PAH mixture (0.01-1 mg/kg, 28 days, ip) demonstrated that this method allowed the detection of 16 PAHs and 28 OH-PAHs out of the 69 analytes investigated. Mean concentrations of PAHs in animal brain samples exposed to 1 mg/kg of PAH mixture ranged from 3.0 ± 2 pg/mg for benzo[b]fluoranthene to 146 ± 29 pg/mg for phenanthrene. Concomitantly, mean concentrations of OH-PAHs ranged from 0.49 ± 0.4 to 26.5 ± 23 pg/mg for 2-OH-chrysene and 1-OH-pyrene respectively. This study proves, for the first time, the bioavailability of most of the PAHs and OH-PAHs in mammalian brain tissue and should provide an important new tool for future neurotoxicological studies.
Asunto(s)
Encéfalo/metabolismo , Contaminantes Ambientales/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Espectrometría de Masas en Tándem/métodos , Animales , Disponibilidad Biológica , Contaminantes Ambientales/farmacocinética , Hidroxilación , Masculino , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Ratas , Reproducibilidad de los ResultadosRESUMEN
The potent neurotoxicity of benzo[a]pyrene (B[a]P) has been suggested to be a susceptibility factor accelerating the onset of brain tumours and the emergence of neurobehavioural disturbances. B[a]P has been shown to be neurotoxic, acting directly on both the central and peripheral nervous systems, as well as indirectly via peripheral organs like liver and gut. By using a realistic B[a]P exposure scenario (0.02-200 mg/kg/day, 10 days) in mice, we elucidated brain-specific B[a]P metabolism and at identified hydroxylated B[a]P metabolites in serum which could be used as markers of cognitive impairment. Repeated oral administration of B[a]P led to, at the doses of 20 and 200 mg/kg/day, significant overexpression of Cyp1a1/Cyp1b1 in 2 out of the 3 brain regions considered, thereby suggesting the ability of the brain to metabolize B[a]P itself. At the same doses, mice exhibited a reduction in anxiety in both the elevated plus maze and the hole board apparatus. Concomitantly, B[a]P triggered dose-dependent changes in Nmda subunit expression (Nr1 and Nr2a/Nr2b) in areas involved in cognition. We detected 9-OH-B[a]P and 7,8-diol-B[a]P in serum at the level for which cognitive impairment was observed. We suggest that these metabolites may, in the future be exploited as potent biomarkers of B[a]P-induced cognitive impairments.
RESUMEN
DNA methylation is one of the most important epigenetic modifications and is closely related with several biological processes such as regulation of gene transcription and the development of non-malignant diseases. The prevailing dogma states that DNA methylation in eukaryotes occurs essentially through 5-methylcytosine (5mC) but recently adenine methylation was also found to be present in eukaryotes. In mouse embryonic stem cells, 6-methyladenine (6mA) was associated with the repression and silencing of genes, particularly in the X-chromosome, known to play an important role in cell fate determination. Here, we have demonstrated that 6mA is a ubiquitous eukaryotic epigenetic modification that is put in place during epigenetically sensitive periods such as embryogenesis and fetal development. In somatic cells there are clear tissue specificity in 6mA levels, with the highest 6mA levels being observed in the brain. In zebrafish, during the first 120 h of embryo development, from a single pluripotent cell to an almost fully formed individual, 6mA levels steadily increase. An identical pattern was observed over embryonic days 7-21 in the mouse. Furthermore, exposure to a neurotoxic environmental pollutant during the same early life period may led to a decrease in the levels of this modification in female rats. The identification of the periods during which 6mA epigenetic marks are put in place increases our understanding of this mammalian epigenetic modification, and raises the possibility that it may be associated with developmental processes.
RESUMEN
The harmful effects of exposure to benzo[alpha]pyrene (B[alpha]P), which is a neurotoxic pollutant, on mammalian neurodevelopment and/or behaviour as yet remain widely unclear. In the present investigation, we evaluated the impact of the lactational exposure to B[alpha]P on postnatal development of pups and behaviour of young mice. The neurobiological effects of B[alpha]P during lactation were also evaluated on pups' brain. Here, we found that lactational exposure to B[alpha]P at 2 and 20mg/kg affects the neuromaturation of pups by significantly decreasing their reflex as highlighted in surface righting reflex and negative geotaxis tests. However, we noted a significant increase in muscular strength of lactationally B[alpha]P mg/kg-exposed pups, which was probably due to the impact of the exposure to this toxic compound on body weight gain. At the pup stage, lactational exposure to B[alpha]P also provoked a neurobiological change, which was assessed by determination of neuronal receptor gene expression. Indeed, a significant reduction in gene expression of 5HT(1A) receptors in pups exposed to B[alpha]P through lactation was found in comparison to controls. Additionally, attenuation in the expression of MOR(1) mRNA was observed, but statistically significant only in animals receiving the higher dose. Neither the expression levels of ADRA(1D) nor GABA(A) mRNA were altered. Interestingly, the harmful effects of lactational exposure to B[alpha]P on behaviour and cognitive function were still found despite a long post-weaning period. Young mice whose mothers were exposed to B[alpha]P displayed a disinhibition behaviour towards the aversive spaces of the elevated plus maze. Furthermore, a significant increase of spontaneous alternation in the Y-maze was observed, but only in young mice whose mothers were orally exposed to the lower dose of B[alpha]P. Our results suggest a close link between the neurobiological change highlighted in pups' brain and the different behavioural disturbances observed during postnatal development period until young adult stage.
Asunto(s)
Conducta Animal/efectos de los fármacos , Benzo(a)pireno/toxicidad , Encéfalo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Exposición Materna/efectos adversos , Animales , Animales Recién Nacidos , Ansiedad/inducido químicamente , Benzo(a)pireno/farmacocinética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Contaminantes Ambientales/farmacocinética , Femenino , Lactancia , Masculino , Memoria/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Distribución Aleatoria , Receptores Adrenérgicos alfa 1/biosíntesis , Receptores Adrenérgicos alfa 1/genética , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/genética , Receptores Opioides mu/biosíntesis , Receptores Opioides mu/genética , Receptores de Serotonina/biosíntesis , Receptores de Serotonina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
The incidence of neurodevelopmental and neurodegenerative diseases worldwide has dramatically increased over the last decades. Although the aetiology remains uncertain, evidence is now growing that exposure to persistent organic pollutants during sensitive neurodevelopmental periods such as early life may be a strong risk factor, predisposing the individual to disease development later in life. Epidemiological studies have associated environmentally persistent organic pollutant exposure to brain disorders including neuropathies, cognitive, motor, and sensory impairments; neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD); and neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). In many ways, this expands the classical "Developmental Origins of Health and Disease" paradigm to include exposure to pollutants. This model has been refined over the years to give the current "three-hit" model that considers the individual's genetic factors as a first "hit." It has an immediate interaction with the early-life exposome (including persistent organic pollutants) that can be considered to be a second "hit." Together, these first two "hits" produce a quiescent or latent phenotype, most probably encoded in the epigenome, which has become susceptible to a third environmental "hit" in later life. It is only after the third "hit" that the increased risk of disease symptoms is crystallised. However, if the individual is exposed to a different environment in later life, they would be expected to remain healthy. In this review, we examine the effect of exposure to persistent organic pollutants and particulate matters in early life and the relationship to subsequent neurodevelopmental and neurodegenerative disorders. The roles of those environmental factors which may affect epigenetic DNA methylation and therefore influence normal neurodevelopment are then evaluated.
RESUMEN
Abnormal glutamatergic transmission caused by modulation of N-methyl-D-aspartate (NMDA) receptors was demonstrated in animal models chronically exposed to various organic micropollutants. Recent developments in neurobiology have implicated these receptors in the regulation of anxiety. In order to investigate anxiety-related effects of benzo[a]pyrene (B[a]P), Balb/c mice were sub-acutely exposed to B[a]P (0.02-200 mg kg(-1) day(-1), 10 days, i.p.). Their performance was tested in the elevated-plus maze and the hole-board apparatus and the NMDA receptor expression genes (NR1, 2A and 2B subunits) was measured in eight brain regions. Mice treated with 20-200 mg kg(-1) B[a]P showed a disproportionate accumulation of B[a]P and its metabolites (in particular, the toxic 7,8-diol-B[a]P) in the blood and even more in the brain. These mice were less anxious than controls in the hole-board test and the elevated-plus maze. This observation was associated with an overexpression of the NMDA NR1 receptor gene and concomitant decreases of the NR2A and NR2B subunits expression in the hippocampus, the hypothalamus and the cerebellum. In the temporal cortex, a significant dose-related decrease of NR2A was observed whereas the other subunits remained unchanged. In conclusion, a sub-acute exposure to B[a]P (20 and 200 mg kg(-1)) reduced anxiety-related behaviour in adult mice and concomitantly impaired NMDA receptor gene expression in relevant brain regions.
Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Benzo(a)pireno/toxicidad , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Animales , Ansiedad/inducido químicamente , Ansiedad/genética , Benzo(a)pireno/administración & dosificación , Benzo(a)pireno/metabolismo , Encéfalo/efectos de los fármacos , Culinaria , Relación Dosis-Respuesta a Droga , Femenino , Exposición por Inhalación , Ratones , Exposición Profesional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fumar/efectos adversosRESUMEN
Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomized animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities.