RESUMEN
OBJECTIVE: To determine the optimum rate of low-flow hypothermic cardiopulmonary bypass (LF), following circulatory arrest (DHCA) on brain oxygenation (bO(2)), extracellular dopamine (DA), phosphorylation of select neuroregulatory proteins responsible for neuronal injury, and survival following ischemic brain injury: CREB, Erk1/2, Akt, Bcl-2, and Bax. METHODS: The piglets were placed on cardiopulmonary bypass (CPB) and cooled to 18 degrees C. They were then subjected to 30 min of DHCA followed by 1h of LF at 20, 50, or 80 ml/(kg/min), rewarmed, separated from CPB, and maintained for 2h. The bO(2) was measured by quenching of phosphorescence; DA by microdialysis; phosphorylation of CREB, ERK1/2, Akt, Bcl-2, and Bax by Western blots. The results are means+/-SD for seven experiments. RESULTS: Pre-bypass bO(2) was 47.4+/-4.2 mmHg and decreased to 1.9+/-0.8 mmHg during DHCA. At the end of LF at 20, 50, and 80 ml/(kg/min), bO(2) was 11.8+/-1.6, 26+/-1.8, and 33.9+/-2.6 mmHg, respectively. The DA increased 510-fold relative to control (p<0.001) by 15 min of LF-20 with maximum increase occurring at 45 min. With LF-50, increase in DA was not statistically significant and no increase was observed when LF-80 was used. Bcl-2 immunoreactivity increased after LF-50 and LF-80 (140+/-14.5%, p<0.05 and 202+/-34%, p<0.05, respectively). Neither flow increased Bax immunoreactivity. The ratio of Bcl-2/Bax, pCREB, pAkt, pErk increased significantly with increasing the flow rate of LF. CONCLUSIONS: The protective effect of LF following DHCA on brain metabolism is dependent on the flow rate. Flow-dependent increase in pCREB, pErk1/2, pAkt, increase in Bcl-2/Bax, and decrease in DA indicated that to minimize DHCA-dependent neuronal injury, LF flow should be above 50 ml/(kg/min).
Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Puente Cardiopulmonar/métodos , Paro Circulatorio Inducido por Hipotermia Profunda/métodos , Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/metabolismo , Circulación Cerebrovascular/fisiología , Cuerpo Estriado/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/análisis , Modelos Animales de Enfermedad , Dopamina/análisis , Dopaminérgicos/análisis , Proteínas Quinasas Activadas por Mitógenos/análisis , Proteína Oncogénica v-akt/análisis , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Porcinos , Proteína X Asociada a bcl-2/análisisRESUMEN
BACKGROUND: Our knowledge of the best perfusion flow rate to use during cardiopulmonary bypass (CPB) in order to maintain tissue oxygenation remains incomplete. The present study examined the effects of perfusion flow rate and patent ductus arteriosus (PDA) during normothermic CPB on oxygenation in several organ tissues of newborn piglets. METHODS: The experiments were performed on 12 newborn piglets: 6 with PDA ligation (PDA-L), and 6 without PDA ligation (PDA-NL). CPB was performed through the chest at 37 degrees C. During CPB, the flow rate was changed at 15-minute intervals, ranging from 100 to 250 ml/kg/min. Tissue oxygenation was measured by quenching of phosphorescence. RESULTS: For the PDA-L group, oxygen in the brain did not change significantly with changes in flow rate. In contrast, for the PDA-NL group, oxygen was dependent upon the flow rate. Statistically significant decreases in cortical oxygen were observed with flow rates below 175 ml/kg/min. Within the myocardium, liver, and intestine, there were no significant differences in the oxygen levels between the PDA-L and PDA-NL groups. In these tissues, the oxygen decreased significantly as the flow rate decreased below 150 ml/kg/min, 125 ml/kg/min, and 175 ml/kg/min, respectively. Oxygen pressure in skeletal muscle was not dependent on either PDA ligation or flow rate. CONCLUSIONS: In newborn piglets undergoing CPB, the presence of a PDA results in reduced tissue oxygenation to the brain but not to other organs. In general, perfusion flow rates of 175 ml/kg/min or greater are required in order to maintain normal oxygenation of all organs except muscle.
Asunto(s)
Puente Cardiopulmonar , Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Presión Sanguínea , Conducto Arterioso Permeable/metabolismo , Frecuencia Cardíaca , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Microcirculación/fisiología , Modelos Animales , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Porcinos , Distribución TisularRESUMEN
OBJECTIVES: The continuing search for interventions, which address the incidence and grade of rectal toxicities associated with radiation treatment of prostate cancer, is a major concern. We are reporting an investigational trial using human collagen to increase the distance between the prostate and anterior rectal wall, thereby decreasing the radiation dose to the rectum. METHODS: This is a pilot study evaluating the use of human collagen as a displacing agent for the rectal wall injected before starting a course of intensity-modulated radiotherapy (IMRT) for prostate cancer. Using a transperineal approach, 20 mL of human collagen was injected into the perirectal space in an outpatient setting. Computerized IMRT plans were performed pre- and postcollagen injection, and after a patient completed their radiotherapy, to determine radiation dose reduction to the rectum associated with the collagen injection. Computed tomography scans were performed 6 months and 12 months after completing their radiotherapy to evaluate absorption rate of the collagen. All patients were treated with IMRT to a dose of 75.6 Gy to the prostate. RESULTS: Eleven patients were enrolled into the study. The injection of human collagen in the outpatient setting was well tolerated. The mean separation between the prostate and anterior rectum was 12.7 mm. The mean reduction in dose to the anterior rectal wall was 50%. All men denied any rectal symptoms during the study. CONCLUSIONS: The transperineal injection of human collagen for the purpose of tissue displacement is well tolerated in the outpatient setting. The increased separation between the prostate and rectum resulted in a significant decrease in radiation dose to the rectum while receiving IMRT and was associated with no rectal toxicities.
Asunto(s)
Colágeno/administración & dosificación , Órganos en Riesgo/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Traumatismos por Radiación/prevención & control , Recto/efectos de la radiación , Colágeno/farmacocinética , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Proyectos Piloto , Próstata/anatomía & histología , Neoplasias de la Próstata/patología , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Recto/anatomía & histologíaRESUMEN
OBJECTIVES: Delayed sternal closure after pediatric cardiac surgery can temporarily impair cardiac output. Cerebral and somatic regional oxygen saturation measured by using near-infrared spectroscopy (NIRS) have been used as potential surrogates of cerebral and somatic mixed venous oxygen saturation. We hypothesized that cerebral and somatic regional oxygen saturation correlate with indicators of hemodynamic compromise after delayed sternal closure in children undergoing cardiac surgery. METHODS: We studied 36 postoperative children (median age, 10 days; range, 1-510 days) undergoing delayed sternal closure 3.7 +/- 2 days after cardiac surgery. Twenty-five had biventricular physiology, whereas 11 had single-ventricle physiology. Cerebral regional oxygen saturation, somatic regional oxygen saturation, and other physiologic parameters (hemodynamic data, respiratory data, blood gas analysis, lactate levels, and inotrope scores) were analyzed at 16 different time points 24 hours before and after sternal closure. One-way analysis of variance and the paired t test were used for statistical comparisons. RESULTS: Cerebral and somatic regional oxygen saturation decreased after delayed sternal closure compared with preclosure levels (P = .02 and P = .01, respectively). Higher heart rate (P = .03), lactate levels (P = .02), and left atrial pressure (P = .001) were also noted, suggesting mild hemodynamic compromise. Arterial pressure and inotrope score were unchanged. Somatic regional oxygen saturation returned to preclosure levels earlier in the biventricular group than in the single-ventricle group, whereas cerebral regional oxygen saturation remained decreased after sternal closure with no evidence of return to preclosure levels during the observation period. Oxygen saturation, Pao(2), and Paco(2) levels were unaffected by sternal closure, although greater positive-pressure ventilation was required (P < .01), suggesting reduced lung compliance. CONCLUSION: Cerebral and somatic regional oxygen saturation decrease after delayed sternal closure in children recovering from congenital cardiac surgery. These indices are in agreement with other physiologic indicators of cardiac performance, suggesting mild and transient hemodynamic compromise after sternal closure. Cerebral and somatic regional oxygen saturation monitoring might be a useful adjunct during delayed sternal closure.
Asunto(s)
Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/cirugía , Oxígeno/análisis , Esternón/cirugía , Abdomen , Análisis de los Gases de la Sangre , Química Encefálica , Gasto Cardíaco , Procedimientos Quirúrgicos Cardíacos , Hemodinámica , Humanos , Recién Nacido , Oximetría/métodos , Oxígeno/sangre , Periodo Posoperatorio , Espectroscopía Infrarroja Corta , Toracotomía , Factores de TiempoRESUMEN
BACKGROUND: Despite improvements in neonatal heart surgery, neurologic complications continue to occur from low-flow cardiopulmonary bypass (LF-CPB) and deep hypothermic circulatory arrest (DHCA). Desflurane confers neuroprotection against ischemia at normothermia and for DHCA. This study compared neurologic outcome of a desflurane-based with a fentanyl-based anesthetic for LF-CPB. METHODS: Thirty piglets aged 1 week received either fentanyl-droperidol (F/D), desflurane 4.5% (Des4.5), or desflurane 9% (Des9) during surgical preparation and CPB. Arterial blood gases, glucose, heart rate, arterial pressure, brain temperature, and cerebral blood flow (laser Doppler flowmetry) were recorded. After CPB cooling (22 degrees C brain) using pH-stat strategy, LF-CPB was performed for 150 min followed by CPB rewarming, separation from CPB, and extubation. On postoperative day 2, functional and histologic outcomes were assessed. RESULTS: Cardiovascular variables were physiologically similar between groups before, during, and after LF-CPB. Cerebral blood flow during LF-CPB (13% of pre-CPB value) did not differ significantly between the groups. Functional disability was worse in F/D than in Des9 (P = 0.04) but not Des4.5 (P = 0.1). In neocortex, histopathologic damage was greater in F/D than in Des4.5 (P = 0.03) and Des9 (P = 0.009). In hippocampus, damage was worse in F/D than in Des9 (P = 0.01) but not Des4.5 (P = 0.08). The incidences of ventricular fibrillation during LF-CPB were 90, 60, and 10% for F/D, Des4.5 (P = 0.06), and Des9 (P = 0.0002), respectively. CONCLUSIONS: Desflurane improved neurologic outcome following LF-CPB compared with F/D in piglets, indicated by less functional disability and less histologic damage, especially with Des9. Desflurane may have produced cardiac protection, suggested by a lower incidence of ventricular fibrillation.