Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048640

RESUMEN

The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicosilación , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales
2.
Anal Chem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935274

RESUMEN

Tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) has proven a versatile tool for the identification and quantification of proteins and their post-translational modifications (PTMs). Protein glycosylation is a critical PTM for the stability and biological function of many proteins, but full characterization of site-specific glycosylation of proteins remains analytically challenging. Collision-induced dissociation (CID) is the most common fragmentation method used in LC-MS/MS workflows, but the loss of labile modifications renders CID inappropriate for detailed characterization of site-specific glycosylation. Electron-based dissociation methods provide alternatives that retain intact glycopeptide fragments for unambiguous site localization, but these methods often underperform CID due to increased reaction times and reduced efficiency. Electron-activated dissociation (EAD) is another strategy for glycopeptide fragmentation. Here, we use a ZenoTOF 7600 SCIEX instrument to compare the performance of various fragmentation techniques for the analysis of a complex mixture of mammalian O- and N-glycopeptides. We found CID fragmentation identified the most glycopeptides and generally produced higher quality spectra, but EAD provided improved confidence in glycosylation site localization. Supplementing EAD with CID fragmentation (EAciD) further increased the number and quality of glycopeptide identifications, while retaining localization confidence. These methods will be useful for glycoproteomics workflows for either optimal glycopeptide identification or characterization.

3.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725484

RESUMEN

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Asunto(s)
Glicopéptidos/sangre , Glicoproteínas/sangre , Informática/métodos , Proteoma/análisis , Proteómica/métodos , Investigadores/estadística & datos numéricos , Programas Informáticos , Glicosilación , Humanos , Proteoma/metabolismo , Espectrometría de Masas en Tándem
4.
PLoS Genet ; 17(8): e1009780, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460824

RESUMEN

Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the Sec61 complex, a heterotrimeric protein complex possessing two essential sub-units, Sec61p/Sec61α and Sss1p/Sec61γ and the non-essential Sbh1p/Sec61ß subunit. In addition to forming a protein conducting channel, the Sec61 complex maintains the ER permeability barrier, preventing flow of molecules and ions. Loss of Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C-terminus is juxtaposed to the key gating module of Sec61p/Sec61α and is important for gating the translocon. Inspection of the cancer genome database identifies six mutations in highly conserved amino acids of Sec61γ/Sss1p. We identify that five out of the six mutations identified affect gating of the ER translocon, albeit with varying strength. Together, we find that mutations in Sec61γ that arise in malignant cells result in altered translocon gating dynamics, this offers the potential for the translocon to represent a target in co-therapy for cancer treatment.


Asunto(s)
Canales de Translocación SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos/genética , Transporte Biológico , Permeabilidad de la Membrana Celular/genética , Permeabilidad de la Membrana Celular/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Neoplasias/genética , Neoplasias/metabolismo , Transporte de Proteínas/genética , Canales de Translocación SEC/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
J Proteome Res ; 22(11): 3596-3606, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37821127

RESUMEN

Sorghum (Sorghum bicolor), a grass native to Africa, is a popular alternative to barley for brewing beer. The importance of sorghum to beer brewing is increasing because it is a naturally gluten-free cereal, and climate change is expected to cause a reduction in the production of barley over the coming decades. However, there are challenges associated with the use of sorghum instead of barley in beer brewing. Here, we used proteomics and metabolomics to gain insights into the sorghum brewing process to advise processes for efficient beer production from sorghum. We found that during malting, sorghum synthesizes the amylases and proteases necessary for brewing. Proteomics revealed that mashing with sorghum malt required higher temperatures than barley malt for efficient protein solubilization. Both α- and ß-amylase were considerably less abundant in sorghum wort than in barley wort, correlating with lower maltose concentrations in sorghum wort. However, metabolomics revealed higher glucose concentrations in sorghum wort than in barley wort, consistent with the presence of an abundant α-glucosidase detected by proteomics in sorghum malt. Our results indicate that sorghum can be a viable grain for industrial fermented beverage production, but that its use requires careful process optimization for efficient production of fermentable wort and high-quality beer.


Asunto(s)
Hordeum , Sorghum , Grano Comestible , Sorghum/metabolismo , alfa-Glucosidasas/metabolismo , Cerveza/análisis , Proteómica , Fermentación
6.
Crit Rev Microbiol ; : 1-19, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934111

RESUMEN

Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.

7.
Mol Ecol ; 32(1): 37-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217579

RESUMEN

The sugars that coat the outsides of viruses and host cells are key to successful disease transmission, but they remain understudied compared to other molecular features. Understanding the comparative zoology of glycosylation - and harnessing it for predictive science - could help close the molecular gap in zoonotic risk assessment.


Asunto(s)
Viroma , Virus , Glicosilación , Virus/genética
8.
Crit Rev Biotechnol ; 43(3): 484-502, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35430942

RESUMEN

Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.


Asunto(s)
Factor IX , Calidad de Vida , Cricetinae , Animales , Humanos , Factor IX/metabolismo , Cricetulus , Proteínas Recombinantes/metabolismo , Células CHO , Ingeniería Celular
9.
Mol Cell Proteomics ; 20: 100020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32938748

RESUMEN

Sparkling wine is an alcoholic beverage enjoyed around the world. The sensory properties of sparkling wine depend on a complex interplay between the chemical and biochemical components in the final product. Glycoproteins have been linked to positive and negative qualities in sparkling wine, but the glycosylation profiles of sparkling wine have not been previously investigated in detail. We analyzed the glycoproteome of sparkling wines using protein- and glycopeptide-centric approaches. We developed an automated workflow that created ion libraries to analyze sequential window acquisition of all theoretical mass spectra data-independent acquisition mass spectrometry data based on glycopeptides identified by Byonic (Protein Metrics; version 2.13.17). We applied our workflow to three pairs of experimental sparkling wines to assess the effects of aging on lees and of different yeast strains used in the liqueur de tirage for secondary fermentation. We found that aging a cuvée on lees for 24 months compared with 8 months led to a dramatic decrease in overall protein abundance and an enrichment in large glycans at specific sites in some proteins. Secondary fermentation of a Riesling wine with Saccharomyces cerevisiae yeast strain Siha4 produced more yeast proteins and glycoproteins than with S. cerevisiae yeast strain DV10. The abundance and glycosylation profiles of grape glycoproteins were also different between grape varieties. To our knowledge, this work represents the first in-depth study into protein- and peptide-specific glycosylation in sparkling wines and describes a quantitative glycoproteomic sequential window acquisition of all theoretical mass spectra/data-independent acquisition workflow that is broadly applicable to other sample types.


Asunto(s)
Proteínas Fúngicas/análisis , Glicopéptidos/análisis , Glicoproteínas/análisis , Proteínas de Plantas/análisis , Saccharomyces cerevisiae , Vitis/química , Vino/análisis , Fermentación , Proteínas Fúngicas/metabolismo , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Proteínas de Plantas/metabolismo , Polisacáridos/metabolismo , Proteómica , Saccharomyces cerevisiae/metabolismo
10.
Proteomics ; 22(15-16): e2100329, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716130

RESUMEN

Beer and wine are fermented beverages that contain abundant proteins released from barley or grapes, and secreted from yeast. These proteins are associated with many quality attributes including turbidity, foamability, effervescence, flavour and colour. Many grape proteins and secreted yeast proteins are glycosylated, and barley proteins can be glycated under the high temperatures in the beer making process. The emergence of high-resolution mass spectrometry has allowed proteomic and glycoproteomic analyses of these complex mixtures of proteins towards understanding their role in determining beer and wine attributes. In this review, we summarise recent studies of proteomic and glycoproteomic analyses of beer and wine including their strategies for mass spectrometry (MS)-based identification, quantification and characterisation of the glyco/proteomes of fermented beverages to control product quality.


Asunto(s)
Hordeum , Vitis , Vino , Cerveza/análisis , Proteínas Fúngicas/análisis , Proteómica/métodos , Saccharomyces cerevisiae , Vino/análisis
11.
J Cell Sci ; 133(6)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32005703

RESUMEN

The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Hexosiltransferasas , Proteínas de la Membrana , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Péptido Hidrolasas/metabolismo
12.
Fungal Genet Biol ; 160: 103688, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339703

RESUMEN

Short open reading frame (sORF)-encoded peptides (sPEPs) have been found across a wide range of genomic locations in a variety of species. To date, their identification, validation, and characterisation in the human fungal pathogen Cryptococcus neoformans has been limited due to a lack of standardised protocols. We have developed an enrichment process that enables sPEP detection within a protein sample from this polysaccharide-encapsulated yeast, and implemented proteogenomics to provide insights into the validity of predicted and hypothetical sORFs annotated in the C. neoformans genome. Novel sORFs were discovered within the 5' and 3' UTRs of known transcripts as well as in "non-coding" RNAs. One novel candidate, dubbed NPB1, that resided in an RNA annotated as "non-coding", was chosen for characterisation. Through the creation of both specific point mutations and a full deletion allele, the function of the new sPEP, Npb1, was shown to resemble that of the bacterial trans-translation protein SmpB.


Asunto(s)
Cryptococcus neoformans , Proteínas Fúngicas , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Genómica , Sistemas de Lectura Abierta , Péptidos/genética
13.
Planta ; 257(1): 8, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481955

RESUMEN

MAIN CONCLUSION: When gene editing was applied to knockout beta-kafirin, there was a compensatory increase of gamma-kafirin which does not occur in domesticated null varieties, so enhanced grain quality was not achieved. Sorghum bicolor is an important animal feedstock cereal crop throughout Australia and the southern United States, where its use as a food product is limited by issues with low calorific and nutritive value. Qualities such as reduced digestibility and low essential amino acid content are directly attributed to the kafirin grain storage proteins, the major components of protein bodies within the endosperm. Specifically, the ß- and γ-kafirins have few protease cleavage sites and high levels of cysteine residues which lead to a highly cross-linked shell of intra- and inter-molecular disulphide linkages that encapsulate the more digestible α- and δ-kafirins in the core of the protein bodies. Naturally occurring ß-kafirin mutants exist and are known to have improved grain quality, with enhanced protein contents and digestibility, traits which are often attributed to the lack of this cysteine-rich kafirin in the mature grain. However, when CRISPR/Cas9 editing was used to create ß-kafirin knockout lines, there was no improvement to grain quality in the Tx430 background, although they did have unique protein composition and changes to protein body morphology in the vitreous endosperm. One explanation of the divergence in quality traits found the lines lacking ß-kafirin are due to a drastic increase of γ-kafirin which was only found in the gene edited lines. This study highlights that in some germplasm, there is a level of redundancy between the peripheral kafirins, and that improvement of grain protein digestibility cannot be achieved by simply removing the ß-kafirin protein in all genetic backgrounds.


Asunto(s)
Sorghum , Sorghum/genética , Cisteína , Australia
14.
Crit Rev Biotechnol ; 42(7): 1099-1115, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34844499

RESUMEN

Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.


Asunto(s)
Productos Biológicos , Reactores Biológicos , Animales , Células CHO , Cricetinae , Cricetulus , Perfusión
15.
J Biol Chem ; 295(7): 2125-2134, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31848225

RESUMEN

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and major site of protein biogenesis. Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the evolutionarily conserved Sec61 complex, a heterotrimeric channel that comprises the Sec61p/Sec61α, Sss1p/Sec61γ, and Sbh1p/Sec61ß subunits. In addition to forming a protein-conducting channel, the Sec61 complex also functions to maintain the ER permeability barrier, preventing the mass free flow of essential ER-enriched molecules and ions. Loss in Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C terminus is juxtaposed to the key gating module of Sec61p/Sec61α, and we hypothesize it is important for gating the ER translocon. The ER stress response was found to be constitutively induced in two temperature-sensitive sss1 mutants (sss1ts ) that are still proficient to conduct ER translocation. A screen to identify intergenic mutations that allow for sss1ts cells to grow at 37 °C suggests the ER permeability barrier to be compromised in these mutants. We propose the extreme C terminus of Sss1p/Sec61γ is an essential component of the gating module of the ER translocase and is required to maintain the ER permeability barrier.


Asunto(s)
Retículo Endoplásmico/genética , Biosíntesis de Proteínas/genética , Canales de Translocación SEC/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos/genética , Estrés del Retículo Endoplásmico/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación/genética , Permeabilidad , Transporte de Proteínas/genética , Canales de Translocación SEC/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
16.
Biochem Biophys Res Commun ; 553: 72-77, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33756348

RESUMEN

Germin and germin-like proteins (GLPs) are a broad family of extracellular glycoproteins ubiquitously distributed in plants. Overexpression of Oryza sativa root germin like protein 1 (OsRGLP1) enhances superoxide dismutase (SOD) activity in transgenic plants. Here, we report bioinformatic analysis and heterologous expression of OsRGLP1 to study the role of glycosylation on OsRGLP1 protein stability and activity. Sequence analysis of OsRGLP1 homologs identified diverse N-glycosylation sequons, one of which was highly conserved. We therefore expressed OsRGLP1 in glycosylation-competent Saccharomyces cerevisiae as a Maltose Binding Protein (MBP) fusion. Mass spectrometry analysis of purified OsRGLP1 showed it was expressed by S. cerevisiae in both N-glycosylated and unmodified forms. Glycoprotein thermal profiling showed little difference in the thermal stability of the glycosylated and unmodified protein forms. Circular Dichroism spectroscopy of MBP-OsRGLP1 and a N-Q glycosylation-deficient variant showed that both glycosylated and unmodified MBP-OsRGLP1 had similar secondary structure, and both forms had equivalent SOD activity. Together, we concluded that glycosylation was not critical for OsRGLP1 protein stability or activity, and it could therefore likely be produced in Escherichia coli without glycosylation. Indeed, we found that OsRGLP1 could be efficiently expressed and purified from K12 shuffle E. coli with a specific activity of 1251 ± 70 Units/mg. In conclusion, we find that some highly conserved N-glycosylation sites are not necessarily required for protein stability or activity, and describe a suitable method for production of OsRGLP1 which paves the way for further characterization and use of this protein.


Asunto(s)
Secuencia Conservada , Glicoproteínas/química , Glicoproteínas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Glicosilación , Oryza/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Raíces de Plantas/química , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Superóxido Dismutasa/aislamiento & purificación , Superóxido Dismutasa/metabolismo
17.
Parasite Immunol ; 43(7): e12836, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33843060

RESUMEN

Previous studies have applied genomics and transcriptomics to identify immune and genetic markers as key indicator traits for cattle tick susceptibility/resistance; however, results differed between breeds, and there is lack of information on the use of host proteomics. Serum samples from Santa Gertrudis cattle (naïve and phenotyped over 105 days as tick-resistant [TR] or tick-susceptible [TS]) were used to conduct differential abundance analyses of protein profiles. Serum proteins were digested into peptides followed by identification and quantification using sequential window acquisition of all instances of theoretical fragment ion mass spectrometry. Before tick infestation, abundance of 28 proteins differed significantly (adjusted P < 10-5 ) between TR and TS. These differences were also observed following tick infestation (TR vs TS) with a further eight differentially abundant proteins in TR cattle, suggesting possible roles in adaptive responses. The intragroup comparisons (TS-0 vs TS and TR-0 vs TR) showed that tick infestation elicited quite similar responses in both groups of cattle, but with relatively stronger responses in TR cattle. Many of the significantly differentially abundant proteins in TR Santa Gertrudis cattle (before and after tick infestation) were associated with immune responses including complement factors, chemotaxis for immune cells and acute-phase responses.


Asunto(s)
Enfermedades de los Bovinos , Rhipicephalus , Infestaciones por Garrapatas , Animales , Bovinos , Susceptibilidad a Enfermedades , Proteoma , Infestaciones por Garrapatas/veterinaria
18.
Mol Cell Proteomics ; 18(9): 1721-1731, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31186289

RESUMEN

Mashing is a key step in beer brewing in which starch and proteins are solubilized from malted barley in a hot water extraction and digested to oligomaltose and free amino nitrogen. We used SWATH-MS to measure the abundance and site-specific modifications of proteins throughout a small-scale pale ale mash. Proteins extracted from the malt at low temperatures early in the mash decreased precipitously in abundance at higher temperatures late in the mash due to temperature/time-induced unfolding and aggregation. We validated these observations using experimental manipulation of time and temperature parameters in a microscale pale ale mash. Correlation analysis of temperature/time-dependent abundance showed that sequence and structure were the main features that controlled protein abundance profiles. Partial proteolysis by barley proteases was common early in the mash. The resulting proteolytically clipped proteins were particularly sensitive and were preferentially lost at high temperatures late in the mash, while intact proteins remained soluble. The beer brewing proteome is therefore driven by the interplay between protein solubilization and proteolysis, which are in turn determined by barley variety, growth conditions, and brewing process parameters.


Asunto(s)
Cerveza , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteoma/metabolismo , Hordeum , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem , Temperatura , Tiempo
19.
J Proteome Res ; 19(1): 464-476, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31774288

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is a leading cause of respiratory tract infections worldwide and continues to be a global health burden. Adhesion and colonization of host cells are crucial steps in bacterial pathogenesis, and in many strains of NTHi, the interaction with the host is mediated by the high molecular weight adhesins HMW1A and HMW2A. These adhesins are N-glycoproteins that are modified by cytoplasmic glycosyltransferases HMW1C and HMW2C. Phase variation in the number of short sequence repeats in the promoters of hmw1A and hmw2A directly affects their expression. Here, we report the presence of similar variable repeat elements in the promoters of hmw1C and hmw2C in diverse NTHi isolates. In an ex vivo assay, we systematically altered the substrate and glycosyltransferase expression and showed that both of these factors quantitatively affected the site-specific efficiency of glycosylation on HMW-A. This represents a novel mechanism through which phase variation can generate diversity in the quantitative extent of site-specific post-translational modifications on antigenic surface proteins. Glycosylation occupancy was incomplete at many sites, variable between sites, and generally lower close to the C-terminus of HMW-A. We investigated the causes of this variability. As HMW-C glycosylates HMW-A in the cytoplasm, we tested how secretion affected glycosylation on HMW-A and showed that retaining HMW-A in the cytoplasm indeed increased glycosylation occupancy across the full length of the protein. Site-directed mutagenesis showed that HMW-C had no inherent preference for glycosylating asparagines in NxS or NxT sequons. This work provides key insights into factors contributing to the heterogenous modifications of NTHi HMW-A adhesins, expands knowledge of NTHi population diversity and pathogenic capability, and is relevant to vaccine design for NTHi and related pathogens.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Haemophilus influenzae/metabolismo , Técnicas de Tipificación Bacteriana , Glicoproteínas/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Haemophilus influenzae/clasificación , Haemophilus influenzae/aislamiento & purificación , Polisacáridos/metabolismo , Regiones Promotoras Genéticas , Proteómica/métodos , Secuencias Repetitivas de Ácidos Nucleicos
20.
J Proteome Res ; 19(5): 2149-2158, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32207952

RESUMEN

Proteomic analysis of bioreactor supernatants can inform on cellular metabolic status, viability, and productivity, as well as product quality, which can in turn help optimize bioreactor operation. Incubating mammalian cells in bioreactors requires the addition of polymeric surfactants such as Pluronic F68, which reduce the sheer stress caused by agitation. However, these surfactants are incompatible with mass spectrometry proteomics and must be eliminated during sample preparation. Here, we compared four different sample preparation methods to eliminate polymeric surfactants from filtered bioreactor supernatant samples: organic solvent precipitation; filter-assisted sample preparation (FASP); S-Trap; and single-pot, solid-phase, sample preparation (SP3). We found that SP3 and S-Trap substantially reduced or eliminated the polymer(s), but S-Trap provided the most robust cleanup and highest quality data. Additionally, we observed that SP3 sample preparation of our samples and in other published data sets was associated with partial alkylation of cysteines, which could impact the confidence and robustness of protein identification and quantification. Finally, we observed that several commercial mammalian cell culture media and media supplements also contained polymers with similar mass spectrometry profiles, and we suggest that proteomic analyses in these media will also benefit from the use of S-Trap sample preparation.


Asunto(s)
Proteómica , Tensoactivos , Animales , Reactores Biológicos , Técnicas de Cultivo de Célula , Poloxámero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA