Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 118(2): 584-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141174

RESUMEN

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Asunto(s)
Germinación , Plantones , Fenotipo , Germinación/fisiología , Semillas , Procesamiento de Imagen Asistido por Computador
2.
EMBO J ; 38(24): e101822, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31736111

RESUMEN

Environmental adaptation of organisms relies on fast perception and response to external signals, which lead to developmental changes. Plant cell growth is strongly dependent on cell wall remodeling. However, little is known about cell wall-related sensing of biotic stimuli and the downstream mechanisms that coordinate growth and defense responses. We generated genetically encoded pH sensors to determine absolute pH changes across the plasma membrane in response to biotic stress. A rapid apoplastic acidification by phosphorylation-based proton pump activation in response to the fungus Fusarium oxysporum immediately reduced cellulose synthesis and cell growth and, furthermore, had a direct influence on the pathogenicity of the fungus. In addition, pH seems to influence cellulose structure. All these effects were dependent on the COMPANION OF CELLULOSE SYNTHASE proteins that are thus at the nexus of plant growth and defense. Hence, our discoveries show a remarkable connection between plant biomass production, immunity, and pH control, and advance our ability to investigate the plant growth-defense balance.


Asunto(s)
Arabidopsis/inmunología , Mecanismos de Defensa , Concentración de Iones de Hidrógeno , Desarrollo de la Planta/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Pared Celular , Celulosa/metabolismo , Fusariosis , Fusarium/patogenicidad , Glucosiltransferasas , Proteínas Asociadas a Microtúbulos/genética , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Estrés Fisiológico
3.
J Cell Sci ; 134(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34528690

RESUMEN

The trans-Golgi network/early endosome (TGN/EE) serves as the central hub in which exocytic and endocytic trafficking pathways converge and specificity of cargo routing needs to be achieved. Acidification is a hallmark of the TGN/EE and is maintained by the vacuolar H+-ATPase (V-ATPase) with support of proton-coupled antiporters. We show here that ClCd and ClCf, two distantly related members of the Arabidopsis Cl- channel (ClC) family, colocalize in the TGN/EE, where they act redundantly, and are essential for male gametophyte development. Combining an inducible knockdown approach and in vivo pH measurements, we show here that reduced ClC activity does not affect pH in the TGN/EE but causes hyperacidification of trans-Golgi cisternae. Taken together, our results show that ClC-mediated anion transport into the TGN/EE is essential and affects spatiotemporal aspects of TGN/EE maturation as well as its functional separation from the Golgi stack.


Asunto(s)
Proteínas de Arabidopsis , Red trans-Golgi , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosomas/metabolismo , Fluoresceínas , Concentración de Iones de Hidrógeno , Transporte de Proteínas , Red trans-Golgi/metabolismo
4.
Plant Cell ; 32(8): 2582-2601, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32471862

RESUMEN

Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Colorantes Fluorescentes/metabolismo , Sistemas de Mensajero Secundario , Transcripción Genética , Adenosina Trifosfato/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Cloruros/metabolismo , Citosol/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/farmacología , Disulfuro de Glutatión/farmacología , Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/farmacología , Oxidación-Reducción , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transcripción Genética/efectos de los fármacos
5.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834961

RESUMEN

Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Salinidad , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Cloruro de Sodio/farmacología , Transducción de Señal/fisiología
6.
Plant J ; 106(6): 1541-1556, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33780094

RESUMEN

The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.


Asunto(s)
Arabidopsis/metabolismo , Simulación por Computador , Homeostasis/fisiología , Modelos Biológicos , Vacuolas/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Calcio , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Endosomas/genética , Endosomas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Macrólidos/farmacología , Mutación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Red trans-Golgi/fisiología
7.
J Exp Bot ; 73(8): 2308-2319, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35085386

RESUMEN

Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo
8.
J Cell Sci ; 132(7)2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30837286

RESUMEN

The regulation of ion and pH homeostasis of endomembrane organelles is critical for functional protein trafficking, sorting and modification in eukaryotic cells. pH homeostasis is maintained through the activity of vacuolar H+-ATPases (V-ATPases) pumping protons (H+) into the endomembrane lumen, and counter-action by cation/proton exchangers, such as the NHX family of Na+(K+)/H+ exchangers. In plants, V-ATPase activity at the trans-Golgi network/early endosome (TGN/EE) is important for secretory and endocytic trafficking; however, the role of the endosomal antiporters NHX5 and NHX6 in endomembrane trafficking is unclear. Here we show through genetic, pharmacological and live-cell imaging approaches that double knockout of NHX5 and NHX6 results in the impairment of endosome motility and protein recycling at the TGN/EE, but not in the secretion of integral membrane proteins. Furthermore, we report that nhx5 nhx6 mutants are partially insensitive to osmotic swelling of TGN/EE induced by the monovalent cation ionophore monensin, and to late endosomal swelling by the phosphatidylinositol 3/4-kinase inhibitor wortmannin, demonstrating that NHX5 and NHX6 function to regulate the luminal cation composition of endosomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Endosomas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Homeostasis , Iones/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo , Red trans-Golgi/metabolismo
9.
Plant Physiol ; 182(3): 1310-1325, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31862838

RESUMEN

Allantoin is a purine oxidative product involved in long distance transport of organic nitrogen in nodulating legumes and was recently shown to play a role in stress tolerance in other plants. The subcellular localization of enzymes that catalyze allantoin synthesis and degradation indicates that allantoin is produced in peroxisomes and degraded in the endoplasmic reticulum (ER). Although it has been determined that allantoin is mostly synthesized in roots and transported to shoots either for organic nitrogen translocation in legumes or for plant protection during stress in Arabidopsis (Arabidopsis thaliana), the mechanism and molecular components of allantoin export from root cells are still unknown. AtUPS5 (Arabidopsis UREIDE PERMEASE 5) is a transmembrane protein that transports allantoin with high affinity when expressed in yeast. The subcellular fate of splicing variants AtUPS5L (long) and AtUPS5S (short) was studied by tagging them with fluorescent proteins in their cytosolic loops. The capability of these fusion proteins to complement the function of the native proteins was demonstrated by nutritional and salt stress experiments. Both variants localized to the ER, but the AtUPS5L variant was also detected in the trans-Golgi network/early endosome and at the plasma membrane. AtUPS5L and AtUPS5S localization indicates that they could have different roles in allantoin distribution between subcellular compartments. Our data suggest that under nonstress conditions UPS5L and UPS5S may function in allantoin degradation for nutrient recycling, whereas under stress, both genes may be involved in vesicular export allowing allantoin translocation from roots to shoots.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Alantoína/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(10): E2457-E2466, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463724

RESUMEN

Membrane trafficking plays pivotal roles in various cellular activities and higher-order functions of eukaryotes and requires tethering factors to mediate contact between transport intermediates and target membranes. Two evolutionarily conserved tethering complexes, homotypic fusion and protein sorting (HOPS) and class C core vacuole/endosome tethering (CORVET), are known to act in endosomal/vacuolar transport in yeast and animals. Both complexes share a core subcomplex consisting of Vps11, Vps18, Vps16, and Vps33, and in addition to this core, HOPS contains Vps39 and Vps41, whereas CORVET contains Vps3 and Vps8. HOPS and CORVET subunits are also conserved in the model plant Arabidopsis. However, vacuolar trafficking in plants occurs through multiple unique transport pathways, and how these conserved tethering complexes mediate endosomal/vacuolar transport in plants has remained elusive. In this study, we investigated the functions of VPS18, VPS3, and VPS39, which are core complex, CORVET-specific, and HOPS-specific subunits, respectively. Impairment of these tethering proteins resulted in embryonic lethality, distinctly altering vacuolar morphology and perturbing transport of a vacuolar membrane protein. CORVET interacted with canonical RAB5 and a plant-specific R-soluble NSF attachment protein receptor (SNARE), VAMP727, which mediates fusion between endosomes and the vacuole, whereas HOPS interacted with RAB7 and another R-SNARE, VAMP713, which likely mediates homotypic vacuolar fusion. These results indicate that CORVET and HOPS act in distinct vacuolar trafficking pathways in plant cells, unlike those of nonplant systems that involve sequential action of these tethering complexes during vacuolar/lysosomal trafficking. These results highlight a unique diversification of vacuolar/lysosomal transport that arose during plant evolution, using evolutionarily conserved tethering components.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas SNARE/metabolismo , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endosomas/genética , Endosomas/metabolismo , Fusión de Membrana , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteínas SNARE/genética , Vacuolas/enzimología , Vacuolas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética
11.
Proc Natl Acad Sci U S A ; 115(35): E8305-E8314, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104351

RESUMEN

The vacuole is an essential organelle in plant cells, and its dynamic nature is important for plant growth and development. Homotypic membrane fusion is required for vacuole biogenesis, pollen germination, stomata opening, and gravity perception. Known components of the vacuole fusion machinery in eukaryotes include SNARE proteins, Rab GTPases, phosphoinositides, and the homotypic fusion and vacuolar protein sorting (HOPS) tethering complex. HOPS function is not well characterized in plants, but roles in embryogenesis and pollen tube elongation have been reported. Here, we show that Arabidopsis HOPS subunits VPS33 and VPS41 accumulate in late endosomes and that VPS41, but not VPS33, accumulates in the tonoplast via a wortmannin-sensitive process. VPS41 and VPS33 proteins bind to liposomes, but this binding is inhibited by phosphatidylinosiltol-3-phosphate [PtdIns(3)P] and PtdIns(3,5)P2, which implicates a nonconserved mechanism for HOPS recruitment in plants. Inducible knockdown of VPS41 resulted in dramatic vacuole fragmentation phenotypes and demonstrated a critical role for HOPS in vacuole fusion. Furthermore, we provide evidence for genetic interactions between VPS41 and VTI11 SNARE that regulate vacuole fusion, and the requirement of a functional SNARE complex for normal VPS41 and VPS33 localization. Finally, we provide evidence to support VPS33 and SYP22 at the initial stage for HOPS-SNARE interactions, which is similar to other eukaryotes. These results highlight both conserved and specific mechanisms for HOPS recruitment and function during vacuole fusion in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de la Membrana/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Vacuolas/genética , Proteínas de Transporte Vesicular/genética
12.
Semin Cell Dev Biol ; 80: 106-112, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28694113

RESUMEN

Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Vacuolas/metabolismo , Arabidopsis/metabolismo , Fusión de Membrana/fisiología , Plantas
13.
Plant J ; 99(5): 910-923, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31033043

RESUMEN

Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip-focused Ca2+ -gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide-gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip-focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin-binding and Ca2+ -permeable channels organize a robust tip-focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium-signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Señalización del Calcio/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/metabolismo , Pared Celular/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Citosol/metabolismo , Mutación , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Nicotiana
14.
Proc Natl Acad Sci U S A ; 113(2): 452-7, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715743

RESUMEN

The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.


Asunto(s)
Actinas/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Vacuolas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efectos de los fármacos , Imagenología Tridimensional , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Meristema/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Mutación/genética , Miosinas/metabolismo , Fosfatidilinositoles/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/ultraestructura
15.
New Phytol ; 218(2): 414-431, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29332310

RESUMEN

Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Transporte Iónico , Proteínas de Transporte de Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo
16.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29938800

RESUMEN

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Nicotiana/enzimología , Salinidad , Cloruro de Sodio/farmacología , Vacuolas/enzimología , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentración de Iones de Hidrógeno , Isoenzimas/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/enzimología , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Bombas de Protones/metabolismo , Protones , Estrés Fisiológico/efectos de los fármacos , Nicotiana/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/metabolismo
17.
Plant Cell ; 27(12): 3383-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26589552

RESUMEN

The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Genoma de Planta/genética , Pirofosfatasa Inorgánica/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Aclimatación , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Frío , Endosomas/enzimología , Flores/citología , Flores/enzimología , Flores/genética , Flores/fisiología , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/antagonistas & inhibidores , Pirofosfatasa Inorgánica/genética , Meristema/citología , Meristema/enzimología , Meristema/genética , Meristema/fisiología , Mutagénesis Insercional , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantones/citología , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ADN , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , Red trans-Golgi/enzimología
18.
New Phytol ; 216(1): 303-320, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28850185

RESUMEN

Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Genes Reporteros , Imagenología Tridimensional/métodos , Adenosina Trifosfato/farmacología , Calibración , Indicadores y Reactivos , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(17): E1806-14, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733919

RESUMEN

Stomatal movements rely on alterations in guard cell turgor. This requires massive K(+) bidirectional fluxes across the plasma and tonoplast membranes. Surprisingly, given their physiological importance, the transporters mediating the energetically uphill transport of K(+) into the vacuole remain to be identified. Here, we report that, in Arabidopsis guard cells, the tonoplast-localized K(+)/H(+) exchangers NHX1 and NHX2 are pivotal in the vacuolar accumulation of K(+) and that nhx1 nhx2 mutant lines are dysfunctional in stomatal regulation. Hypomorphic and complete-loss-of-function double mutants exhibited significantly impaired stomatal opening and closure responses. Disruption of K(+) accumulation in guard cells correlated with more acidic vacuoles and the disappearance of the highly dynamic remodelling of vacuolar structure associated with stomatal movements. Our results show that guard cell vacuolar accumulation of K(+) is a requirement for stomatal opening and a critical component in the overall K(+) homeostasis essential for stomatal closure, and suggest that vacuolar K(+) fluxes are also of decisive importance in the regulation of vacuolar dynamics and luminal pH that underlie stomatal movements.


Asunto(s)
Arabidopsis/fisiología , Membranas Intracelulares/metabolismo , Estomas de Plantas/fisiología , Potasio/metabolismo , Vacuolas/metabolismo , Ácidos/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Cationes/metabolismo , Forma de la Célula/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Imagenología Tridimensional , Rayos Infrarrojos , Movimiento , Mutación/genética , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/genética , Suelo , Termografía , Vacuolas/efectos de los fármacos , Vacuolas/genética , Agua
20.
Proc Natl Acad Sci U S A ; 111(42): 15261-6, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288746

RESUMEN

The brassinosteroid (BR) signaling module is a central regulator of plant morphogenesis, as indicated by the large number of BR-responsive cell wall-related genes and the severe growth defects of BR mutants. Despite a detailed knowledge of the signaling components, the logic of this auto-/paracrine signaling module in growth control remains poorly understood. Recently, extensive cross-talk with other signaling pathways has been shown, suggesting that the outputs of BR signaling, such as gene-expression changes, are subject to complex control mechanisms. We previously provided evidence for a role of BR signaling in a feedback loop controlling the integrity of the cell wall. Here, we identify the first dedicated component of this feedback loop: a receptor-like protein (RLP44), which is essential for the compensatory triggering of BR signaling upon inhibition of pectin de-methylesterification in the cell wall. RLP44 is required for normal growth and stress responses and connects with the BR signaling pathway, presumably through a direct interaction with the regulatory receptor-like kinase BAK1. These findings corroborate a role for BR in controlling the sensitivity of a feedback signaling module involved in maintaining the physico-chemical homeostasis of the cell wall during cell expansion.


Asunto(s)
Brasinoesteroides/química , Pectinas/química , Proteínas de Plantas/fisiología , Proteínas de Arabidopsis/fisiología , Pared Celular/metabolismo , Clonación Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis , Ligandos , Microscopía Confocal , Mutación , Fenotipo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA