RESUMEN
Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.
Asunto(s)
Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Muerte Celular , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Ratones , Destreza Motora/efectos de los fármacos , NADH Deshidrogenasa/deficiencia , NADH Deshidrogenasa/genética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Fenotipo , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismoRESUMEN
Regulatory T cells (Treg cells), a distinct subset of CD4+ T cells, are necessary for the maintenance of immune self-tolerance and homeostasis1,2. Recent studies have demonstrated that Treg cells exhibit a unique metabolic profile, characterized by an increase in mitochondrial metabolism relative to other CD4+ effector subsets3,4. Furthermore, the Treg cell lineage-defining transcription factor, Foxp3, has been shown to promote respiration5,6; however, it remains unknown whether the mitochondrial respiratory chain is required for the T cell-suppression capacity, stability and survival of Treg cells. Here we report that Treg cell-specific ablation of mitochondrial respiratory chain complex III in mice results in the development of fatal inflammatory disease early in life, without affecting Treg cell number. Mice that lack mitochondrial complex III specifically in Treg cells displayed a loss of T cell-suppression capacity without altering Treg cell proliferation and survival. Treg cells deficient in complex III showed decreased expression of genes associated with Treg function, whereas Foxp3 expression remained stable. Loss of complex III in Treg cells increased DNA methylation as well as the metabolites 2-hydroxyglutarate (2-HG) and succinate that inhibit the ten-eleven translocation (TET) family of DNA demethylases7. Thus, Treg cells require mitochondrial complex III to maintain immune regulatory gene expression and suppressive function.
Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Autotolerancia/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Desmetilación del ADN , Metilación de ADN , Transporte de Electrón , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Glutaratos/metabolismo , Inflamación/genética , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Autotolerancia/genética , Ácido Succínico/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/enzimologíaRESUMEN
Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors.
Asunto(s)
Complejo III de Transporte de Electrones , Oxígeno , Respiración , Animales , Hipoxia de la Célula/fisiología , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Canales Iónicos , Ratones , NAD/metabolismo , Oxígeno/metabolismoRESUMEN
Cancer cells experience increased levels of oxidant stress as a consequence of oncogene activation, nucleotide biosynthesis, and growth factor receptor signaling. Mitochondria contribute to this redox stress by generating reactive oxygen species (ROS) along the electron transport chain, which are released to the matrix and the intermembrane space (IMS). Assessing the contribution of mitochondrial ROS in cancer cells is technically difficult, as electron transport chain inhibitors can increase or decrease ROS generation, while they also block oxidative phosphorylation and ATP synthesis. Mitochondria-targeted antioxidant compounds can scavenge ROS in the matrix compartment but do not act on ROS released to the IMS. We assessed the importance of mitochondrial ROS for tumor cell proliferation, survival, and for tumor xenograft growth by stably expressing a hydrogen peroxide (H2O2) scavenger, peroxiredoxin-5, in the mitochondrial IMS (IMS-Prdx5) in 143B osteosarcoma and HCT116 colorectal cancer cell lines. IMS-Prdx5 attenuates hypoxia-induced ROS signaling as assessed independently in cytosol and IMS, HIF-1α stabilization and activity, and cellular proliferation under normoxic and hypoxic culture conditions. It also suppressed tumor growth in vivo. Stable expression of nondegradable HIF-1α only partially rescued proliferation in IMS-Prdx5-expressing cells, indicating that mitochondrial H2O2 signaling contributes to tumor cell proliferation and survival through HIF-dependent and HIF-independent mechanisms.
Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Proliferación Celular , Peróxido de Hidrógeno/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Ahead of Print article withdrawn by publisher.
RESUMEN
It is widely appreciated that T cells increase glycolytic flux during activation, but the role of mitochondrial flux is unclear. Here, we have shown that mitochondrial metabolism in the absence of glucose metabolism is sufficient to support interleukin-2 (IL-2) induction. Furthermore, we used mice with reduced mitochondrial reactive oxygen species (mROS) production in T cells (T-Uqcrfs(-/-) mice) to show that mitochondria are required for T cell activation to produce mROS for activation of nuclear factor of activated T cells (NFAT) and subsequent IL-2 induction. These mice could not induce antigen-specific expansion of T cells in vivo, but Uqcrfs1(-/-) T cells retained the ability to proliferate in vivo under lymphopenic conditions. This suggests that Uqcrfs1(-/-) T cells were not lacking bioenergetically but rather lacked specific ROS-dependent signaling events needed for antigen-specific expansion. Thus, mitochondrial metabolism is a critical component of T cell activation through the production of complex III ROS.
Asunto(s)
Mitocondrias/metabolismo , Factores de Transcripción NFATC/genética , Linfocitos T/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Animales , Proliferación Celular , Complejo III de Transporte de Electrones/metabolismo , Femenino , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Proteínas Hierro-Azufre/deficiencia , Proteínas Hierro-Azufre/genética , Activación de Linfocitos , Linfopenia/inmunología , Linfopenia/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/inmunología , Factores de Transcripción NFATC/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunologíaRESUMEN
Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.
Asunto(s)
Deficiencias de Hierro , Proteínas Hierro-Azufre/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , NADH Deshidrogenasa/metabolismo , Tristetraprolina/metabolismo , Animales , Línea Celular , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Proteínas Hierro-Azufre/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , NADH Deshidrogenasa/genética , Oxidación-Reducción , Tristetraprolina/genéticaRESUMEN
Pulmonary hypertension (PH) and right ventricular (RV) hypertrophy frequently develop in patients with hypoxic lung disease. Chronic alveolar hypoxia (CH) promotes sustained pulmonary vasoconstriction and pulmonary artery (PA) remodeling by acting on lung cells, resulting in the development of PH. RV hypertrophy develops in response to PH, but coronary arterial hypoxemia in CH may influence that response by activating HIF-1α (hypoxia-inducible factor 1α) and/or HIF-2α in cardiomyocytes. Indeed, other studies show that the attenuation of PH in CH fails to prevent RV remodeling, suggesting that PH-independent factors regulate RV hypertrophy. Therefore, we examined the role of HIFs in RV remodeling in CH-induced PH. We deleted HIF-1α and/or HIF-2α in hearts of adult mice that were then housed under normoxia or CH (10% O2) for 4 weeks. RNA-sequencing analysis of the RV revealed that HIF-1α and HIF-2α regulate the transcription of largely distinct gene sets during CH. RV systolic pressure increased, and RV hypertrophy developed in CH. The deletion of HIF-1α in smooth muscle attenuated the CH-induced increases in RV systolic pressure but did not decrease hypertrophy. The deletion of HIF-1α in cardiomyocytes amplified RV remodeling; this was abrogated by the simultaneous loss of HIF-2α. CH decreased stroke volume and cardiac output in wild-type but not in HIF-1α-deficient hearts, suggesting that CH may cause cardiac dysfunction via HIF-dependent signaling. Collectively, these data reveal that HIF-1 and HIF-2 act together in RV cardiomyocytes to orchestrate RV remodeling in CH, with HIF-1 playing a protective role rather than driving hypertrophy.
Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/complicaciones , Función Ventricular Derecha/fisiología , Remodelación Ventricular/fisiología , Animales , Enfermedad Crónica , Eliminación de Gen , Regulación de la Expresión Génica , Ontología de Genes , Hipertensión Pulmonar/genética , Integrasas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Transcripción Genética , Función Ventricular Derecha/genética , Remodelación Ventricular/genéticaAsunto(s)
Displasia Broncopulmonar , Hiperoxia , Recién Nacido , Lactante , Humanos , Pulmón , Recien Nacido Prematuro , Senescencia CelularRESUMEN
When lung cells experience hypoxia, the functional response, termed hypoxic pulmonary vasoconstriction, activates a multitude of pathways with the goal of optimizing gas exchange. While previously controversial, overwhelming evidence now suggests that increased reactive oxygen species - produced at complex III of the mitochondrial electron transport chain and released into the intermembrane space - is the cellular oxygen signal responsible for triggering hypoxic pulmonary vasoconstriction. The increased reactive oxygen species (ROS) activate many downstream targets that ultimately lead to increased intracellular ionized calcium concentration and contraction of pulmonary arterial smooth muscle cells. While the specific targets of ROS signals are not completely understood, it is clear that this signalling pathway is critical for development and for normal lung function in newborns and adults.
Asunto(s)
Hipoxia/metabolismo , Pulmón/irrigación sanguínea , Especies Reactivas de Oxígeno/metabolismo , Vasoconstricción , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatología , Humanos , Hipoxia/fisiopatología , Transducción de SeñalRESUMEN
The hypoxic response is a stress response triggered by low oxygen tension. Hypoxia-inducible factors (HIFs) play a prominent role in the pathobiology of hypoxia-associated conditions, including pulmonary hypertension (PH) and polycythemia. The c-Jun N-terminal protein kinase (JNK), a stress-activated protein kinase that consists of two ubiquitously expressed isoforms, JNK1 and JNK2, and a tissue-specific isoform, JNK3, has been shown to be activated by hypoxia. However, the physiological role of JNK1 and JNK2 in the hypoxic response remains elusive. Here, using genetic knockout cells and/or mice, we show that JNK2, but not JNK1, up-regulates the expression of HIF-1α and HIF-2α and contributes to hypoxia-induced PH and polycythemia. Knockout or silencing of JNK2, but not JNK1, prevented the accumulation of HIF-1α in hypoxia-treated cells. Loss of JNK2 resulted in a decrease in HIF-1α and HIF-2α mRNA levels under resting conditions and in response to hypoxia. Consequently, hypoxia-treated Jnk2-/- mice had reduced erythropoiesis and were less prone to polycythemia because of decreased expression of the HIF target gene erythropoietin (Epo). Jnk2-/- mice were also protected from hypoxia-induced PH, as indicated by lower right ventricular systolic pressure, a process that depends on HIF. Taken together, our results suggest that JNK2 is a positive regulator of HIFs and therefore may contribute to HIF-dependent pathologies.
Asunto(s)
Hipoxia de la Célula/fisiología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Eritropoyesis/fisiología , Eritropoyetina/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/fisiología , Proteína Quinasa 9 Activada por Mitógenos/fisiología , Policitemia/metabolismo , ARN Mensajero/genética , Activación Transcripcional , Regulación hacia ArribaRESUMEN
Age-dependent elevation in mitochondrial oxidative stress is widely posited to be a major factor underlying the loss of substantia nigra pars compacta (SNc) dopaminergic neurons in Parkinson's disease (PD). However, mechanistic links between aging and oxidative stress are not well understood. Sirtuin-3 (Sirt3) is a mitochondrial deacetylase that could mediate this connection. Indeed, genetic deletion of Sirt3 increased oxidative stress and decreased the membrane potential of mitochondria in SNc dopaminergic neurons. This change was attributable to increased acetylation and decreased activity of manganese superoxide dismutase (MnSOD). Site directed mutagenesis of lysine 68 to glutamine (K68Q), mimicking acetylation, decreased MnSOD activity in SNc dopaminergic neurons, whereas mutagenesis of lysine 68 to arginine (K68R), mimicking deacetylation, increased activity. Introduction of K68R MnSOD rescued mitochondrial redox status and membrane potential of SNc dopaminergic neurons from Sirt3 knockouts. Moreover, deletion of DJ-1, which helps orchestrate nuclear oxidant defenses and Sirt3 in mice led to a clear age-related loss of SNc dopaminergic neurons. Lastly, K68 acetylation of MnSOD was significantly increased in the SNc of PD patients. Taken together, our studies suggest that an age-related decline in Sirt3 protective function is a major factor underlying increasing mitochondrial oxidative stress and loss of SNc dopaminergic neurons in PD.
Asunto(s)
Sirtuina 3/metabolismo , Superóxido Dismutasa/genética , Acetilación , Factores de Edad , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/fisiología , Mutagénesis Sitio-Dirigida , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/genética , Sirtuina 3/genética , Sustancia Negra/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
Intermediate filaments (IFs) are cytoskeletal polymers that extend from the nucleus to the cell membrane, giving cells their shape and form. Abnormal accumulation of IFs is involved in the pathogenesis of number neurodegenerative diseases, but none as clearly as giant axonal neuropathy (GAN), a ravaging disease caused by mutations in GAN, encoding gigaxonin. Patients display early and severe degeneration of the peripheral nervous system along with IF accumulation, but it has been difficult to link GAN mutations to any particular dysfunction, in part because GAN null mice have a very mild phenotype. We therefore established a robust dorsal root ganglion neuronal model that mirrors key cellular events underlying GAN. We demonstrate that gigaxonin is crucial for ubiquitin-proteasomal degradation of neuronal IF. Moreover, IF accumulation impairs mitochondrial motility and is associated with metabolic and oxidative stress. These results have implications for other neurological disorders whose pathology includes IF accumulation.
Asunto(s)
Proteínas del Citoesqueleto/genética , Neuropatía Axonal Gigante/genética , Proteínas de Filamentos Intermediarios/genética , Filamentos Intermedios/genética , Animales , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Neuropatía Axonal Gigante/patología , Humanos , Proteínas de Filamentos Intermediarios/biosíntesis , Filamentos Intermedios/patología , Ratones , Mitocondrias/genética , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ProteolisisRESUMEN
While increased mitochondrial reactive oxygen species have been commonly implicated in a variety of disease states, their in vivo role in the pathogenesis of diabetic nephropathy remains controversial. Using a two-photon imaging approach with a genetically encoded redox biosensor, we monitored mitochondrial redox state in the kidneys of experimental models of diabetes in real-time in vivo. Diabetic (db/db) mice that express a redox-sensitive Green Fluorescent Protein biosensor (roGFP) specifically in the mitochondrial matrix (db/dbmt-roGFP) were generated, allowing dynamic monitoring of redox changes in the kidneys. These db/dbmt-roGFP mice exhibited a marked increase in mitochondrial reactive oxygen species in the kidneys. Yeast NADH-dehydrogenase, a mammalian Complex I homolog, was ectopically expressed in cultured podocytes, and this forced expression in roGFP-expressing podocytes prevented high glucose-induced increases in mitochondrial reactive oxygen species. Thus, in vivo monitoring of mitochondrial roGFP in diabetic mice confirms increased production of mitochondrial reactive oxygen species in the kidneys.
Asunto(s)
Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/patología , Riñón/patología , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Técnicas Biosensibles , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Oxidación-Reducción , PodocitosRESUMEN
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Its causes are poorly understood and there is no proven therapeutic strategy for slowing disease progression. The core motor symptoms of PD are caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNc). In these neurons, Ca2+entry through plasma membrane Cav1 channels drives a sustained feed-forward stimulation of mitochondrial oxidative phosphorylation. Although this design helps prevent bioenergetic failure when activity needs to be sustained, it leads to basal mitochondrial oxidant stress. Over decades, this basal oxidant stress could compromise mitochondrial function and increase mitophagy, resulting in increased vulnerability to other proteostatic stressors, like elevated alpha synuclein expression. Because this feedforward mechanism is no longer demanded by our lifestyle, it could be dispensed with. Indeed, use of dihydropyridines - negative allosteric modulators of Cav1 Ca2+ channels - comes with little or no effect on brain function but is associated with decreased risk and progression of PD. An ongoing, NIH sponsored, Phase 3 clinical trial in North America is testing the ability of one member of the dihydropyridine class (isradipine) to slow PD progression in early stage patients. The review summarizes the rationale for the trial and outlines some unanswered questions.
Asunto(s)
Calcio/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Citosol/metabolismo , Humanos , Transporte Iónico , Neuronas/metabolismo , Enfermedad de Parkinson/patologíaAsunto(s)
Pediatría , Neumología , Adolescente , Contaminación del Aire , Asma , Displasia Broncopulmonar , Niño , Preescolar , Trastornos de la Motilidad Ciliar , Fibrosis Quística , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Obesidad , Síndrome de Dificultad Respiratoria del Recién Nacido , Infecciones del Sistema Respiratorio , VapeoRESUMEN
Mitochondrial fission has been linked to the pathogenesis of diabetic nephropathy (DN). However, how mitochondrial fission affects progression of DN in vivo is unknown. Here, we report the effect of conditional podocyte-specific deletion of dynamin-related protein 1 (Drp1), an essential component of mitochondrial fission, on the pathogenesis and progression of DN. Inducible podocyte-specific deletion of Drp1 in diabetic mice decreased albuminuria and improved mesangial matrix expansion and podocyte morphology. Ultrastructure analysis revealed a significant increase in fragmented mitochondria in the podocytes of wild-type diabetic mice but a marked improvement in mitochondrial structure in Drp1-null podocytes of diabetic mice. When isolated from diabetic mice and cultured in high glucose, Drp1-null podocytes had more elongated mitochondria and better mitochondrial fitness associated with enhanced oxygen consumption and ATP production than wild-type podocytes. Furthermore, administration of a pharmacologic inhibitor of Drp1, Mdivi1, significantly blunted mitochondrial fission and rescued key pathologic features of DN in mice. Taken together, these results provide novel correlations between mitochondrial morphology and the progression of DN and point to Drp1 as a potential therapeutic target in DN.