Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Faraday Discuss ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308395

RESUMEN

Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) is a nascent protocol for predicting, solving, and refining crystal structures. QNMRX-CSP employs a combination of solid-state NMR data from quadrupolar nuclides (i.e., nuclear spin >1/2), static lattice energies and electric field gradient (EFG) tensors from dispersion-corrected density functional theory (DFT-D2*) calculations, and powder X-ray diffraction (PXRD) data; however, it has so far been applied only to organic HCl salts with small and rigid organic components, using 35Cl EFG tensor data for both structural refinement and validation. Herein, QNMRX-CSP is extended to ephedrine HCl (Eph) and pseudoephedrine HCl (Pse), which are diastereomeric compounds that feature distinct space groups and organic components that are larger and more flexible. A series of benchmarking calculations are used to generate structural models that are validated against experimental data, and to explore the impacts of the: (i) starting structural models (i.e., geometry-optimized fragments based on either a known crystal structure or an isolated gas-phase molecule) and (ii) selection of unit cell parameters and space groups. Finally, we use QNMRX-CSP to predict the structure of Pse in the dosage form Sudafed® using only 35Cl SSNMR data as experimental input. This proof-of-concept work suggests the possibility of employing QNMRX-CSP to solve the structures of organic HCl salts in dosage forms - something which is often beyond the capabilities of conventional, diffraction-based characterization methods.

2.
CrystEngComm ; 26(9): 1219-1233, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38419975

RESUMEN

This study describes the discovery of a unique ionic cocrystal of the active pharmaceutical ingredient (API) ponatinib hydrochloride (pon·HCl), and characterization using single-crystal X-ray diffraction (SCXRD) and solid-state NMR (SSNMR) spectroscopy. Pon·HCl is a multicomponent crystal that features an unusual stoichiometry, with an asymmetric unit containing both monocations and dications of the ponatinib molecule, three water molecules, and three chloride ions. Structural features include (i) a charged imidazopyridazine moiety that forms a hydrogen bond between the ponatinib monocations and dications and (ii) a chloride ion that does not feature hydrogen bonds involving any organic moiety, instead being situated in a "square" arrangement with three water molecules. Multinuclear SSNMR, featuring high and ultra-high fields up to 35.2 T, provides the groundwork for structural interpretation of complex multicomponent crystals in the absence of diffraction data. A 13C CP/MAS spectrum confirms the presence of two crystallographically distinct ponatinib molecules, whereas 1D 1H and 2D 1H-1H DQ-SQ spectra identify and assign the unusually deshielded imidazopyridazine proton. 1D 35Cl spectra obtained at multiple fields confirm the presence of three distinct chloride ions, with density functional theory calculations providing key relationships between the SSNMR spectra and H⋯Cl- hydrogen bonding arrangements. A 2D 35Cl → 1H D-RINEPT spectrum confirms the spatial proximities between the chloride ions, water molecules, and amine moieties. This all suggests future application of multinuclear SSNMR at high and ultra-high fields to the study of complex API solid forms for which SCXRD data are unavailable, with potential application to heterogeneous mixtures or amorphous solid dispersions.

3.
Magn Reson Chem ; 62(3): 179-189, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38230444

RESUMEN

This paper reports the principal values of the 13 C chemical shift tensors for five nitrogen-dense compounds (i.e., cytosine, uracil, imidazole, guanidine hydrochloride, and aminoguanidine hydrochloride). Although these are all fundamentally important compounds, the majority do not have 13 C chemical shift tensors reported in the literature. The chemical shift tensors are obtained from 1 H→13 C cross-polarization magic-angle spinning (CP/MAS) experiments that were conducted at a high field of 18.8 T to suppress the effects of 14 N-13 C residual dipolar coupling. Quantum chemical calculations using density functional theory are used to obtain the 13 C magnetic shielding tensors for these compounds. The best agreement with experiment arises from calculations using the hybrid functional PBE0 or the double-hybrid functional PBE0-DH, along with the triple-zeta basis sets TZ2P or pc-3, respectively, and intermolecular effects modeled using large clusters of molecules with electrostatic embedding through the COSMO approach. These measurements are part of an ongoing effort to expand the catalog of accurate 13 C chemical shift tensor measurements, with the aim of creating a database that may be useful for benchmarking the accuracy of quantum chemical calculations, developing nuclear magnetic resonance (NMR) crystallography protocols, or aiding in applications involving machine learning or data mining. This work was conducted at the National High Magnetic Field Laboratory as part of a 2-week school for introducing undergraduate students to practical laboratory experience that will prepare them for scientific careers or postgraduate studies.

4.
Anal Chem ; 95(46): 16936-16942, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37931115

RESUMEN

High-pressure nuclear magnetic resonance (NMR) spectroscopy finds remarkable applications in catalysis, protein biochemistry and biophysics, analytical chemistry, material science, energy, and environmental control but requires expensive probe heads and/or sample cells. This contribution describes the design, construction, and testing of a low-cost 5 mm NMR tube suitable for high-pressure NMR measurements of up to 30 MPa. The sample cell comprises a standard, 5 mm single-crystal sapphire tube that has been fitted to a section of a relatively inexpensive polyether ether ketone (PEEK) HPLC column. PEEK HPLC tubing and connectors enable integration with a gas rig or a standard HPLC pump located outside the stray field of the magnet. The cell is compatible with any 5 mm static NMR probe head, exhibits almost zero background in NMR experiments, and is compatible with any liquid, gas, temperature, or pressure range encountered in HPLC experimentation. A specifically designed transport case enables the safe handling of the pressurized tube outside the probe head. The performance of the setup was evaluated using in situ high-field NMR spectroscopy and MRI performed during the formation of bulk and nanoconfined clathrate hydrates occluding methane, ethane, and hydrogen.

5.
J Phys Chem A ; 127(45): 9621-9634, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37922436

RESUMEN

Cross-polarization (CP) is a technique commonly used for the signal enhancement of NMR spectra; however, applications to quadrupolar nuclei have heretofore been limited due to a number of problems, including poor spin-locking efficiency, inconvenient relaxation times, and reduced CP efficiencies over broad spectral bandwidths─this is unfortunate, since they constitute 73% of NMR-active nuclei in the periodic table. The Broadband Adiabatic Inversion CP (BRAIN-CP) pulse sequence has proven useful for the signal enhancement of wideline and ultra-wideline (i.e., 250 kHz to several MHz in breadth) powder patterns arising from stationary samples; however, a comprehensive investigation of its application to half-integer quadrupolar nuclei (HIQN) is currently lacking. Herein, we present theoretical and experimental considerations for applying BRAIN-CP to acquire central-transition (CT, +1/2 ↔ -1/2) powder patterns of HIQN. Consideration is given to parameters crucial to the success of the experiment, such as the Hartmann-Hahn (HH) matching conditions and the phase modulation of the contact pulse. Modifications to the BRAIN-CP sequence such as flip-back (FB) pulses and ramped contact pulses applied to the 1H spins are used for the reduction of experimental times and increased CP bandwidth capabilities, respectively. Spectra for a series of quadrupolar nuclei with broad CT powder patterns, including 35Cl (S = 3/2), 55Mn (S = 5/2), 59Co (S = 7/2), and 93Nb (S = 9/2), are acquired via direct excitation (CPMG and WCPMG) and indirect excitation (CP/CPMG and BRAIN-CP) methods. We demonstrate that proper implementation of the sequence can enable 1H-S broadband CP over a bandwidth of 1 MHz, which to the best of our knowledge is the largest CP bandwidth reported to date. Finally, we establish the basic principles necessary for simplified optimization and execution of the BRAIN-CP pulse sequence for a wide range of HIQNs.

6.
Mol Pharm ; 19(2): 440-455, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34792373

RESUMEN

This study uses 35Cl and 14N solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations for the structural characterization of chloride salts of nutraceuticals in their bulk and dosage forms. For eight nutraceuticals, we measure the 35Cl EFG tensor parameters of the chloride ions and use plane-wave DFT calculations to elucidate relationships between NMR parameters and molecular-level structure, which provide rapid NMR crystallographic assessments of structural features. We employ both 35Cl direct excitation and 1H→35Cl cross-polarization methods to characterize a dosage form containing α-d-glucosamine HCl, observe possible impurity and/or adulterant phases, and quantify the weight percent of the active ingredient. To complement this, we also investigate 14N SSNMR spectroscopy and DFT calculations to characterize nitrogen atoms in the nutraceuticals. This includes a discussion of targeted acquisition experimental protocols (i.e., acquiring a select region of the overall pattern that features key discontinuities) that allow ultrawideline spectra to be acquired rapidly, even for unreceptive samples (i.e., those with long values of T1(14N), short values of T2eff(14N), or very broad patterns). It is hoped that these experimental and computational protocols will be useful for the characterization of various solid forms of nutraceuticals (i.e., salts, polymorphs, hydrates, solvates, cocrystals, amorphous solid dispersions, etc.), help detect impurity and counterfeit solid phases in dosage forms, and serve as a foundation for future NMR crystallographic studies of nutraceutical solid forms, including studies using ab initio crystal structure prediction algorithms.


Asunto(s)
Cloruros , Suplementos Dietéticos , Cloruros/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular
7.
Phys Chem Chem Phys ; 24(37): 22792-22805, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112060

RESUMEN

There are currently no methods for the acquisition of ultra-wideline (UW) solid-state NMR spectra under static conditions that enable reliable separation and resolution of overlapping powder patterns arising from magnetically distinct nuclei. This stands in contrast to the variety of techniques available for spin-1/2 or half-integer quadrupolar nuclei with narrow central transition patterns under magic-angle spinning (MAS). Resolution of overlapping signals is routinely achieved in MRI and solution-state NMR by exploiting relaxation differences between nonequivalent sites. Preliminary studies of relaxation assisted separation (RAS) for separating overlapping UWNMR patterns using pseudo-inverse Laplace Transforms have reported two-dimensional spectra featuring relaxation rates correlated to NMR interaction frequencies. However, RAS methods are inherently sensitive to experimental noise, and require that relaxation rates associated with overlapped patterns be significantly different from one another. Herein, principal component analysis (PCA) denoising is implemented to increase the signal-to-noise ratios of the relaxation datasets and RAS routines are stabilized with truncated singular value decomposition (TSVD) and elastic net (EN) regularization to resolve overlapped patterns with a larger tolerance for differences in relaxation rates. We extend these methods for improved pattern resolution by utilizing 3D frequency-R1-R2 correlation spectra. Synthetic and experimental datasets, including 35Cl (I = 3/2), 2H (I = 1), and 14N (I = 1) NMR of organic and biological compounds, are explored with both regularized 2D RAS and 3D RAS; comparison of these data reveal improved resolution in the latter case. These methods have great potential for separating overlapping powder patterns under both static and MAS conditions.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Polvos , Relación Señal-Ruido
8.
Solid State Nucl Magn Reson ; 122: 101837, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36434925

RESUMEN

This study uses 35Cl and 2H solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations to characterize the molecular-level structures and dynamics of hydrates of active pharmaceutical ingredients (APIs). We use 35Cl SSNMR to measure the EFG tensors of the chloride ions to characterize hydrated forms of hydrochloride salts of APIs, along with two corresponding anhydrous forms. DFT calculations are used to refine the crystal structures of the APIs and determine relationships between the 35Cl EFG tensors and the spatial arrangements of proximate hydrogen bonds, which are particularly influenced by interactions with water molecules. We find that the relationship between 35Cl EFG tensors and local hydrogen bonding geometries is complex, but meaningful structure/property relationships can be garnered through use of DFT calculations. Specifically, for every case in which such a comparison could be made, we find that the hydrate has a smaller magnitude of CQ than the corresponding anhydrous form, indicating a chloride ion environment with a ground-state electron density of higher spherical symmetry in the former. Finally, variable-temperature 35Cl and 2H SSNMR experiments on a deuterium-exchanged sample of the API cimetidine hydrochloride monohydrate are used to monitor temperature-dependent influences on the spectra that may arise from motional influences on the 35Cl and 2H EFG tensors. From the 2H SSNMR spectra, we determine that the motions of water molecules are characterized by jump-like motions about their C2 rotational axes that occur on timescales that are unlikely to influence the 35Cl central-transition (+1/2 ↔︎ -1/2) powder patterns (this is confirmed by 35Cl SSNMR). Together, these methods show great promise for the future study of APIs in their bulk and dosage forms, especially variable hydrates in which crystallographic water content varies with external conditions such as humidity.


Asunto(s)
Cloruros , Imagen por Resonancia Magnética , Halógenos , Agua , Polvos
9.
J Am Chem Soc ; 143(47): 19778-19784, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34793152

RESUMEN

Chemical exchange saturation transfer (CEST) enhances solution-state NMR signals of labile and otherwise invisible chemical sites, by indirectly detecting their signatures as a highly magnified saturation of an abundant resonance─for instance, the 1H resonance of water. Stimulated by this sensitivity magnification, this study presents PROgressive Saturation of the Proton Reservoir (PROSPR), a method for enhancing the NMR sensitivity of dilute heteronuclei in static solids. PROSPR aims at using these heteronuclei to progressively deplete the abundant 1H polarization found in most organic and several inorganic solids, and implements this 1H signal depletion in a manner that reflects the spectral intensities of the heteronuclei as a function of their chemical shifts or quadrupolar offsets. To achieve this, PROSPR uses a looped cross-polarization scheme that repeatedly depletes 1H-1H local dipolar order and then relays this saturation throughout the full 1H reservoir via spin-diffusion processes that act as analogues of chemical exchanges in the CEST experiment. Repeating this cross-polarization/spin-diffusion procedure multiple times results in an effective magnification of each heteronucleus's response that, when repeated in a frequency-stepped fashion, indirectly maps their NMR spectrum as sizable attenuations of the abundant 1H NMR signal. Experimental PROSPR examples demonstrate that, in this fashion, faithful wideline NMR spectra can be obtained. These 1H-detected heteronuclear NMR spectra can have their sensitivity enhanced by orders of magnitude in comparison to optimized direct-detect experiments targeting unreceptive nuclei at low natural abundance, using modest hardware requirements and conventional NMR equipment at room temperature.

10.
J Am Chem Soc ; 143(31): 12053-12062, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324323

RESUMEN

The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.

11.
Faraday Discuss ; 225: 358-370, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33089860

RESUMEN

Zr(iv) metal-organic frameworks (MOFs) UiO-68 and PCN-57, containing triphenylene dicarboxylate (TPDC) and tetramethyl-triphenylene dicarboxylate (TTDC) linkers, respectively, were doped with an H-shaped tetracarboxylate linker that contains a [2]rotaxane molecular shuttle. The new MOFs, UWDM-8 and UWDM-9, contain a [2]rotaxane crossbar spanning the tetrahedral cavities of the fcu topology while the octahedral cavities remain empty. 13C solid-state NMR (SSNMR) spectra and solution 1H NMR spectra verified that the [2]rotaxanes were included as designed. Variable-temperature (VT) cross polarization (CP) magic-angle spinning (MAS) 13C SSNMR was used to explore the translational motion of the macrocyclic ring in both MOFs. The SSNMR results clearly show that the structure of the linker (TPDCvs.TTDC) affects the shuttling rate of the macrocyclic ring, although questions remain as to how rotation of the central phenylene unit of the strut might also affect the motion of the macrocycle.

12.
J Chem Phys ; 154(3): 034202, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33499635

RESUMEN

Accurate measurements of longitudinal relaxation time constants (T1) in solid-state nuclear magnetic resonance (SSNMR) experiments are important for the study of molecular-level structure and dynamics. Such measurements are often made under magic-angle spinning conditions; however, there are numerous instances where they must be made on stationary samples, which often give rise to broad powder patterns arising from large anisotropic NMR interactions. In this work, we explore the use of wideband uniform-rate smooth-truncation pulses for the measurement of T1 constants. Two experiments are introduced: (i) BRAIN-CPT1, a modification of the BRAIN-CP (BRoadband Adiabatic-INversion-Cross Polarization) sequence, for broadband CP-based T1 measurements and (ii) WCPMG-IR, a modification of the WURST-CPMG sequence, for direct-excitation (DE) inversion-recovery experiments. A series of T1 constants are measured for spin-1/2 and quadrupolar nuclei with broad powder patterns, such as 119Sn (I = 1/2), 35Cl (I = 3/2), 2H (I = 1), and 195Pt (I = 1/2). High signal-to-noise spectra with uniform patterns can be obtained due to signal enhancements from T2 eff-weighted echo trains, and in favorable cases, BRAIN-CPT1 allows for the rapid measurement of T1 in comparison to DE experiments. Protocols for spectral acquisition, processing, and analysis of relaxation data are discussed. In most cases, relaxation behavior can be modeled with either monoexponential or biexponential functions based upon measurements of integrated powder pattern intensity; however, it is also demonstrated that one must interpret such T1 values with caution, as demonstrated by measurements of T1 anisotropy in 119Sn, 2H, and 195Pt NMR spectra.

13.
Magn Reson Chem ; 59(9-10): 1009-1023, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33634894

RESUMEN

Solid-state NMR (SSNMR) spectroscopy of integer-spin quadrupolar nuclei is important for the molecular-level characterization of a variety of materials and biological solids; of the integer spins, 2 H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer-spin nuclei often feature very broad powder patterns that arise largely from the effects of the first-order quadrupolar interaction; as such, the acquisition of high-quality spectra continues to remain a challenge. The broadband adiabatic inversion cross-polarization (BRAIN-CP) pulse sequence, which is capable of cross-polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer-spin nuclei, including 14 N (S = 1), especially when coupled with Carr-Purcell/Meiboom-Gill pulse sequences featuring frequency-swept WURST pulses (WURST-CPMG) for T2 -based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN-CP, nor any concrete theoretical models to aid in its parameterization for applications to integer-spin nuclei. In addition, the BRAIN-CP/WURST-CPMG scheme has not been demonstrated for generalized application to wideline or ultra-wideline (UW) 2 H SSNMR. Herein, we provide a theoretical description of the BRAIN-CP pulse sequence for spin-1/2 → spin-1 CP under static conditions, featuring a set of analytical equations describing Hartmann-Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer-spin CP methods, demonstrating rapid acquisition of 2 H NMR spectra from efficient broadband CP.

14.
Magn Reson Chem ; 59(9-10): 951-960, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33373086

RESUMEN

Field-stepped NMR spectroscopy at up to 36 T using the series-connected hybrid (SCH) magnet at the U.S. National High Magnetic Field Laboratory is demonstrated for acquiring ultra-wideline powder spectra of nuclei with very large quadrupolar interactions. Historically, NMR evolved from the continuous-wave (cw) field-swept method in the early days to the pulsed Fourier-transform method in the modern era. Spectra acquired using field sweeping are generally considered to be equivalent to those acquired using the pulsed method. Here, it is shown that field-stepped wideline spectra of half-integer spin quadrupolar nuclei acquired using WURST/CPMG methods can be significantly different from those acquired with the frequency-stepped method commonly used with superconducting magnets. The inequivalence arises from magnetic field-dependent NMR interactions such as the anisotropic chemical shift and second-order quadrupolar interactions; the latter is often the main interaction leading to ultra-wideline powder patterns of half-integer spin quadrupolar nuclei. This inequivalence needs be taken into account to accurately and correctly determine the quadrupolar coupling and chemical shift parameters. A simulation protocol is developed for spectral fitting to facilitate analysis of field-stepped ultra-wideline NMR spectra acquired using powered magnets. A MATLAB program which implements this protocol is available on request.

15.
Chemistry ; 26(49): 11180-11186, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32315484

RESUMEN

Herein, we establish the preparation, characterization, and reactivity of a new diphosphine ligand, 1,2-bis(di(3-dicyclohexylboraneyl)propylphosphino)ethane (P2 BCy 4 ), a scaffold that contains four pendant boranes. An entryway into the coordination chemistry of P2 BCy 4 is established by using nickel, providing the octaboraneyl complex [Ni(P2 BCy 4 )2 ]-this species contains a boron-rich secondary coordination sphere that reacts readily with Lewis bases. In the case of 4,4'-bipyridine, an air-sensitive coordination polymer is obtained. Characterization of this material by solid-state NMR and EPR spectroscopy reveals the presence of a charge-transfer polymer, which forms as a function of intramolecular Ni→4,4'-bpy electron transfer (ET), providing an array of oxidized nickel sites and reduced 4,4'-bpy radical anion sites. Notably, the related intermolecular reaction between the model fragments [Ni(dnppe)2 ] (dnppe=1,2-bis(di-n-propylphosphino)ethane) and a bis(boraneyl)-protected 4,4'-bpy, provides no ET. Overall, the P2 BCy 4 fragment provides a unique opportunity for Lewis base activation, in one case allowing for the facile construction of monomers for incorporation into redox-active macromolecules.

16.
J Phys Chem A ; 124(49): 10312-10323, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33259216

RESUMEN

Nuclear electric field gradient (EFG) tensor parameters depend strongly on electronic structures, making their calculation from first principles an excellent metric for the prediction, refinement, and optimization of crystal structures. Here, we use plane-wave density functional theory (DFT) calculations of EFG tensors in organic solids to optimize the Grimme (D2) and Tkatchenko-Scheffler (TS) atomic-pairwise force field dispersion corrections. Refinements using these new force field correction methods result in better representations of true crystal structures, as gauged by calculations of 177 14N, 17O, and 35Cl EFG tensors from 95 materials. The most striking result is the degree by which calculations of 35Cl EFG tensors of chloride ions match with experiment, due to the ability of these new methods to properly locate the positions of hydrogen atoms participating in H···Cl- hydrogen bonds. These refined structures also feature atomic coordinates that are more similar to those of neutron diffraction structures than those obtained from calculations that do not employ the optimized force fields. Additionally, we assess the quality of these new energy-minimization protocols for the prediction of 15N magnetic shielding tensors and unit cell volumes, which complement the larger analysis using EFG tensors, since these quantities have different physical origins. It is hoped that these results will be useful in future nuclear magnetic resonance (NMR) crystallographic studies and will be of great interest to a wide variety of researchers, in fields including NMR spectroscopy, computational chemistry, crystallography, pharmaceutical sciences, and crystal engineering.

17.
J Phys Chem A ; 124(16): 3109-3119, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32233483

RESUMEN

The principal components of the 13C chemical shift tensors for the ten crystallographically distinct carbon atoms of the active pharmaceutical ingredient cimetidine Form A have been measured using the FIREMAT technique. Density functional theory (DFT) calculations of 13C and 15N magnetic shielding tensors are used to assign the 13C and 15N peaks. DFT calculations were performed on cimetidine and a training set of organic crystals using both plane-wave and cluster-based approaches. The former set of calculations allowed several structural refinement strategies to be employed, including calculations utilizing a dispersion-corrected force field that was parametrized using 13C and 15N magnetic shielding tensors. The latter set of calculations featured the use of resource-intensive hybrid-DFT methods for the calculation of magnetic shielding tensors. Calculations on structures refined using the new force-field correction result in improved values of 15N magnetic shielding tensors (as gauged by agreement with experimental chemical shift tensors), although little improvement is seen in the prediction of 13C shielding tensors. Calculations of 13C and 15N magnetic shielding tensors using hybrid functionals show better agreement with experimental values in comparison to those using GGA functionals, independent of the method of structural refinement; the shielding of carbon atoms bonded to nitrogen are especially improved using hybrid DFT methods.


Asunto(s)
Cimetidina/química , Teoría Funcional de la Densidad , Isótopos de Carbono , Cristalografía , Espectroscopía de Resonancia Magnética/normas , Estructura Molecular , Estándares de Referencia
18.
Mol Pharm ; 15(9): 4038-4048, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30016112

RESUMEN

Reliable methods for the characterization of drug substances are critical for evaluating stability and bioavailability, especially in dosage formulations under varying storage conditions and usage. Such methods must also give information on the molecular identities and structures of drug substances and any potential byproducts of the formulation process, as well as providing a means of quantifying the relative amounts of these substances. For example, active pharmaceutical ingredients (APIs) are often formulated as ionic salts to improve the pharmaceutical properties of dosage forms; however, exposure of such formulations to elevated temperature and/or humidity can trigger the conversion of an ionic salt of an API to a neutral form with different properties, through a process known as disproportionation. It is particularly challenging to identify changes of pharmaceutical components in solid dosage formulations, which are complex heterogeneous mixtures of the API and excipient components (e.g., binders, disintegrants, and lubricants). In this study, we illustrate that ultra-wideline (UW) 35Cl solid-state NMR (SSNMR) can be used to characterize the disproportionation reaction of pioglitazone HCl (PiogHCl) in mixtures with metallic stearate excipients. 35Cl SSNMR can quantitatively detect the amount of PiogHCl in mixed samples within ±1 wt % and measure the degree of PiogHCl disproportionation in formulation samples stressed at high relative humidity and temperature. Unlike other methods used for characterizing disproportionation, our experiments directly probe the Cl- anions in both the intact salt and disproportionation products, revealing all of the chlorine-containing products in the solid-state chemical reaction without interfering signals from the formulation excipients.


Asunto(s)
Composición de Medicamentos/métodos , Espectroscopía de Resonancia Magnética/métodos , Excipientes/química , Pioglitazona/química , Cloruro de Sodio/química , Solubilidad
19.
Solid State Nucl Magn Reson ; 94: 31-53, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30125798

RESUMEN

We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). The signal enhancement imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels. A feature demanded by these BRAIN-CPMAS methods is to impose a selective adiabatic frequency sweep over a single MAS spinning centerband or sideband, to avoid interference between the MAS modulation and sweeps over multiple sidebands. Upon implementing this swept-CP method, a number of MAS-driven processes happen, including broadband zero- and double-quantum CP transfers, and MAS-driven rotary-resonance phenomena. When this CP method is applied to integer and half-integer quadrupolar nuclei at very fast MAS spinning rates, a favorable double-quantum CP condition is found that can be easily achieved, and avoids the level-crossings among various ms energy levels that complicate quadrupolar CPMAS NMR experiments along lines first shown by Alex Vega. An additional CP mechanism was found in the 1H-2H case, involving static-like zero-quantum CP modes driven by a quadrupole-modulated RF-dipolar zero-order recoupling under MAS. All these phenomena were examined using average Hamiltonian theory, numerical simulations, and experiments on model compounds. Sensitivity-enhanced, distortion-free CP over wide bandwidths were predicted and observed for S = 1/2 and for S = 1 (2H) under fast MAS rates. BRAIN-CPMAS also delivered undistorted central transition NMR spectra of half-integer quadrupolar nuclei, while utilizing low RF field strengths that avoid complex level-crossing effects under high MAS rates.

20.
J Phys Chem A ; 121(1): 51-65, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28036179

RESUMEN

Efficient acquisition of high-quality ultra-wideline (UW) solid-state NMR powder patterns in short experimental time frames is challenging. UW NMR powder patterns often possess inherently low signal-to-noise (S/N) and usually overlap for samples containing two or more magnetically distinct nuclides, which obscures spectral features and drastically lowers the spectral resolution. Currently, there is no reliable method for resolving overlapping powder patterns originating from unreceptive nuclei affected by large anisotropic NMR interactions. Herein, we discuss new methods for resolving individual UW NMR spectra associated with magnetically distinct nuclei by exploiting their different relaxation characteristics using 2D relaxation-assisted separation (RAS) experiments. These experiments use a non-negative Tikhonov fitting (NNTF) routine to process high-quality T1 and T2eff relaxation data sets to produce high-resolution, 2D spin-relaxation correlation spectra for both spin-1/2 and quadrupolar nuclei in organic and organometallic solids under static (i.e., stationary) conditions. It is found that (i) T2eff RAS data sets can be acquired in a fraction of the time required for analogous T1 RAS data sets, because a time-incremented 2D data set is not required for the former, and (ii) Tikhonov regularization is superior to conventional non-negative least-squares fitting, as it more reliably and robustly results in cleaner separation of patterns based on relaxation time constants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA