Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 303: 114153, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875564

RESUMEN

Hydrology and salinity regimes of many impounded wetlands are manipulated to provide seasonal habitats for migratory waterfowl, with little-known consequences for ecosystem structure and function. Managed hydrology can alter ecosystems by directly changing soil properties and processes and by influencing plant community dynamics. Additionally, management history may influence ecosystem response to disturbance, including fires. To better understand how wetland management regime influences ecosystem response to disturbance, we quantified elevation, soil nitrogen concentrations and process rates, and plant community structure and diversity in a natural experiment following the 2018 Branscombe Fire. We measured paired burned-unburned patches in both tidally-influenced and managed, seasonally-impounded wetlands in Suisun Marsh, California, USA. Unburned ecosystem structure and nutrient cycling differed by wetland management history; unburned impounded wetlands were ∼1 m lower in elevation and plant community composition was dominated by succulents whereas the unburned tidal wetland was dominated by graminoids. Unburned impounded wetland soil nitrogen cycling (potential nitrification and denitrification) rates were <28% of those measured in unburned tidal wetland soils and soil extractable nitrate, ammonium, and dissolved inorganic phosphorus concentrations were also substantially lower in unburned impounded than unburned tidal wetlands. Despite these differences in pre-disturbance (i.e., unburned) conditions, all soil processes recovered to baseline levels within 6 months after surface fire, and we found no evidence of plant community change 1 year after fire in either wetland management type. Overall, water management history exerted stronger control on ecosystem processes and structure than surface fire disturbance. Low extractable soil nitrate and potential denitrification rates may indicate limitation of soil nitrogen removal in impounded wetlands, with implications for downstream environmental quality and eutrophication across managed landscapes.


Asunto(s)
Incendios , Humedales , Ecosistema , Nitrógeno/análisis , Estaciones del Año , Suelo
2.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29802192

RESUMEN

Filamentous large sulfur-oxidizing bacteria (FLSB) of the family Beggiatoaceae are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a "fried-egg" appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide. By applying a combination of 15N-labeling techniques and genome sequence analysis, we demonstrate that the white FLSB filaments were capable of reducing their intracellular nitrate stores to both nitrogen gas and ammonium by denitrification and dissimilatory nitrate reduction to ammonium (DNRA), respectively. On the other hand, our combined results show that the orange filaments were primarily capable of DNRA. Microsensor profiles through a laboratory-incubated white FLSB mat revealed a 2- to 3-mm vertical separation between the oxic and sulfidic zones. Denitrification was most intense just below the oxic zone, as shown by the production of nitrous oxide following exposure to acetylene, which blocks nitrous oxide reduction to nitrogen gas. Below this zone, a local pH maximum coincided with sulfide oxidation, consistent with nitrate reduction by DNRA. The balance between internally and externally available electron acceptors (nitrate) and electron donors (reduced sulfur) likely controlled the end product of nitrate reduction both between orange and white FLSB mats and between different spatial and geochemical niches within the white FLSB mat.IMPORTANCE Whether large sulfur bacteria of the family Beggiatoaceae reduce NO3- to N2 via denitrification or to NH4+ via DNRA has been debated in the literature for more than 25 years. We resolve this debate by showing that certain members of the Beggiatoaceae use both metabolic pathways. This is important for the ecological role of these bacteria, as N2 production removes bioavailable nitrogen from the ecosystem, whereas NH4+ production retains it. For this reason, the topic of environmental controls on the competition for NO3- between N2-producing and NH4+-producing bacteria is of great scientific interest. Recent experiments on the competition between these two types of microorganisms have demonstrated that the balance between electron donor and electron acceptor availability strongly influences the end product of NO3- reduction. Our results suggest that this is also the case at the even more fundamental level of enzyme system regulation within a single organism.


Asunto(s)
Compuestos de Amonio/metabolismo , Gammaproteobacteria/metabolismo , Sedimentos Geológicos/microbiología , Respiraderos Hidrotermales/microbiología , Nitratos/metabolismo , Desnitrificación , Ecosistema , Gammaproteobacteria/química , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , México , Oxidación-Reducción , Filogenia
3.
Ecology ; 96(3): 840-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26236879

RESUMEN

Ecological zonation of salt marsh macrophytes is strongly influenced by hydrologic factors, but these factors are poorly understood. We examined groundwater flow patterns through surficial sediments in two saltmarshes in the southeastern United States to quantify hydrologic differences between distinct ecological zones. Both sites included tall- or medium-form Spartina alterniflora near the creek bank; short-form Spartina alterniflora in the mid-marsh; salt flats and Salicornia virginica in the high marsh; and Juncus roemarianus in brackish-to-fresh areas adjacent to uplands. Both sites had relatively small, sandy uplands and similar stratigraphy consisting of marsh muds overlying a deeper sand layer. We found significant hydrologic differences between the four ecological zones. In the zones colonized by S. alterniflora, the vertical flow direction oscillated with semi-diurnal tides. Net flow (14-day average) through the tall S. alterniflora zones was downward, whereas the short S. alterniflora zones included significant periods of net upward groundwater flow. An examination of tidal efficiency at these sites suggested that the net flow patterns rather than tidal damping controlled the width of the tall S. alterniflora zone. In contrast to the S. alterniflora zones, hypersaline zones populated by S. virginica were characterized by sustained periods (days) of continuous upward flow of saline water during neap tides. The fresher zone populated by J. roemarianus showed physical flow patterns that were similar to the hypersaline zones, but the upwelling porewaters were fresh rather than saline. These flow patterns were influenced by the hydrogeologic framework of the marshes, particularly differences in hydraulic head between the upland water table and the tidal creeks. We observed increases in hydraulic head of approximately 40 cm from the creek to the upland in the sand layers below both marshes, which is consistent with previous observations that sandy aquifers below fine-grained marsh soils act as conduits for flow from uplands to tidal creeks. This hydrologic framework supports relatively good drainage near the creek, increased waterlogging in the mid-marsh, and the development of hypersalinity adjacent to the freshwater upland. These hydrologic differences in turn support distinct ecological zones.


Asunto(s)
Agua Subterránea , Magnoliopsida/crecimiento & desarrollo , Salinidad , Suelo/química , Movimientos del Agua , Humedales , Georgia , Plantas Tolerantes a la Sal/crecimiento & desarrollo , South Carolina
4.
Front Microbiol ; 12: 556268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220727

RESUMEN

Nitrification rates are low in permeable intertidal sand flats such that the water column is the primary source of nitrate to the sediment. During tidal inundation, nitrate is supplied to the pore space by advection rather than diffusion, relieving the microorganisms that reside in the sand from nitrate limitation and supporting higher denitrification rates than those observed under diffusive transport. Sand flats are also home to an abundant community of benthic photosynthetic microorganisms, the microphytobenthos (MPB). Diatoms are an important component of the MPB that can take up and store high concentrations of nitrate within their cells, giving them the potential to alter nitrate availability in the surrounding porewater. We tested whether nitrate uptake by the MPB near the sediment surface decreases its availability to denitrifiers along deeper porewater flow paths. In laboratory experiments, we used NO x (nitrate + nitrite) microbiosensors to confirm that, in the spring, net NO x consumption in the zone of MPB photosynthetic activity was stimulated by light. The maximum potential denitrification rate, measured at high spatial resolution using microsensors with acetylene and nitrate added, occurred below 1.4 cm, much deeper than light-induced NO x uptake (0.13 cm). Therefore, the shallower MPB had the potential to decrease NO x supply to the deeper sediments and limit denitrification. However, when applying a realistic downward advective flow to sediment from our study site, NO x always reached the depths of maximum denitrification potential, regardless of light availability or season. We conclude that during tidal inundation porewater advection overwhelms any influence of shallow NO x uptake by the MPB and drives water column NO x to the depths of maximum denitrification potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA