Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Conserv Biol ; 37(6): e14132, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37259636

RESUMEN

The wolf (Canis lupus) is among the most controversial of wildlife species. Abundance estimates are required to inform public debate and policy decisions, but obtaining them at biologically relevant scales is challenging. We developed a system for comprehensive population estimation across the Italian alpine region (100,000 km2 ), involving 1513 trained operators representing 160 institutions. This extensive network allowed for coordinated genetic sample collection and landscape-level spatial capture-recapture analyses that transcended administrative boundaries to produce the first estimates of key parameters for wolf population status assessment. Wolf abundance was estimated at 952 individuals (95% credible interval 816-1120) and 135 reproductive units (i.e., packs) (95% credible interval 112-165). We also estimated that mature individuals accounted for 33-45% of the entire population. The monitoring effort was spatially estimated thereby overcoming an important limitation of citizen science data. This is an important approach for promoting wolf-human coexistence based on wolf abundance monitoring and an endorsement of large-scale harmonized conservation practices.


Una estrategia multidisciplinaria para la estimación del tamaño poblacional de los lobos para la conservación a largo plazo Resumen El lobo (Canis lupus) está entre las especies de fauna más controversiales. Se requieren estimaciones de abundancia para informar al debate público y las decisiones políticas, pero es un reto obtenerlos en escalas con relevancia biológica. Desarrollamos un sistema para la estimación completa de la población en la región alpina de Italia (100,000 km2 ), con la participación de 1,513 operadores entrenados que representan a 160 instituciones. Esta red extensa permitió una colecta coordinada de muestras genéticas y análisis de captura-recaptura espacial que trascendieron las fronteras administrativas para así producir las primeras estimaciones de los parámetros clave para la evaluación del estado de la población de los lobos. Se estimó la abundancia en 952 individuos (95% intervalo de confianza 816-1120) y 135 unidades reproductivas (es decir, manadas) (95% intervalo de confianza 112-165). También estimamos que los individuos maduros representaban el 33-45% de toda la población. El esfuerzo de monitoreo se estimó espacialmente, por lo que sobrepasó una limitación importante de la ciencia ciudadana. Esta estrategia es importante para promover la coexistencia entre lobos y humanos con base en el monitoreo de la abundancia y el apoyo a las prácticas armonizadas de conservación a gran escala.


Asunto(s)
Lobos , Animales , Humanos , Lobos/genética , Conservación de los Recursos Naturales , Densidad de Población , Animales Salvajes
2.
J Hered ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37946557

RESUMEN

Predation is an important species interaction to monitor when assessing an invasive species' impact on a particular ecosystem, but it can be difficult to observe and thus, fully understand. On Kaua'i island, invasive Barn Owls (Tyto alba) predate native seabirds, but difficult terrain in this region and the cryptic nature of owl predation make traditional monitoring of predation quite challenging. Using Barn Owls collected as part of removal efforts on Kaua'i and Lehua islands, we conducted DNA metabarcoding of owl digestive tracts to detect and determine seabird species they predate. We used a seabird-targeted 12s marker to sequence 112 swabs from 55 owls and detected six seabird species, including two ESA-listed seabirds - Hawaiian Petrel (Pterodroma sandwichensis) and Newell's Shearwater (Puffinus newelli), in 12 swabs from 11 owls (20% of sampled owls). Corresponding morphological assessment of owl stomach contents detected seabird species as prey items in only 2% (1/55) of sampled owls, highlighting the utility of molecular approaches for detecting diet items, especially degraded or visually absent items. Additionally, this approach has proven very useful in revealing cryptic trophic interactions in inaccessible seabird populations. For the most comprehensive analysis of diet, the use of both esophageal and cloacal swabs for metabarcoding is recommended. Supplementing metabarcoding with other methods that can provide complementary prey information, such as stable isotope analysis, would help to characterize trophic interactions more fully. The method described here has proven to be a reliable tool for investigating diet in invasive owls and may be used to investigate cryptic predation in living birds as a minimally invasive technique, as well.

3.
Ecol Appl ; 32(5): e2594, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35343015

RESUMEN

Mountain headwater streams have emerged as important climate refuges for native cold-water species due to their slow climate velocities and extreme physical conditions that inhibit non-native invasions. Species persisting in refuges often do so as fragmented, relict populations from broader historical distributions that are subject to ongoing habitat reductions and increasing isolation as climate change progresses. Key for conservation planning is determining where remaining populations will persist and how habitat restoration strategies can improve biological resilience to enhance the long-term prospects for species of concern. Studying bull trout, a headwater species in the northwestern USA, we developed habitat occupancy models using a data set of population occurrence in 991 natal habitat patches with a suite of novel geospatial covariates derived from high-resolution hydroclimatic scenarios and other sources representing watershed and instream habitat conditions, patch geometry, disturbance, and biological interactions. The best model correctly predicted bull trout occupancy status in 82.6% of the patches and included effects for: patch size estimated as habitat volume, extent of within-patch reaches <9°C mean August temperature, distance to nearest occupied patch, road density, invasive brook trout prevalence, patch slope, and frequency of high winter flows. The model was used to assess 16 scenarios of bull trout occurrence within the study streams that represented a range of restoration strategies under three climatic conditions (baseline, moderate change, and extreme change). Results suggested that regional improvements in bull trout status were difficult to achieve in realistic restoration strategies due to the pervasive nature of climate change and the limited extent of restoration actions given their high costs. However, occurrence probabilities in a subset of patches were highly responsive to restoration actions, suggesting that targeted investments to improve the resilience of some populations may be contextually beneficial. A possible strategy, therefore, is focusing effort on responsive populations near more robust population strongholds, thereby contributing to local enclaves where dispersal among populations further enhances resilience. Equally important, strongholds constituted a small numerical percentage of patches (5%-21%), yet encompassed the large majority of occupied habitat by volume (72%-89%) and their protection could have significant conservation benefits for bull trout.


Asunto(s)
Ecosistema , Trucha , Animales , Cambio Climático , Ríos , Estaciones del Año
4.
J Fish Biol ; 101(5): 1312-1325, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36053967

RESUMEN

One of the most fundamental yet challenging tasks for aquatic ecologists is to precisely delineate the range of species, particularly those that are broadly distributed, require specialized sampling methods, and may be simultaneously declining and increasing in different portions of their range. An exemplar is the Pacific lamprey Entosphenus tridentatus, a jawless anadromous fish of conservation concern that is actively managed in many coastal basins in western North America. To efficiently determine its distribution across the accessible 56,168 km of the upper Snake River basin in the north-western United States, we first delimited potential habitat by using predictions from a species distribution model based on conventionally collected historical data and from the distribution of a potential surrogate, Chinook salmon Oncorhynchus tshawytscha, which yielded a potential habitat network of 10,615 km. Within this area, we conducted a two-stage environmental DNA survey involving 394 new samples and 187 archived samples collected by professional biologists and citizen scientists using a single, standardized method from 2015 to 2021. We estimated that Pacific lamprey occupied 1875 km of lotic habitat in this basin, of which 1444 km may have been influenced by recent translocation efforts. Pacific lamprey DNA was consistently present throughout most river main stems, although detections became weaker or less frequent in the largest and warmest downstream channels and near their headwater extent. Pacific lamprey were detected in nearly all stocked tributaries, but there was no evidence of indigenous populations in such habitats. There was evidence of post-stocking movement because detections were 1.8-36.0 km upstream from release sites. By crafting a model-driven spatial sampling template and executing an eDNA-based sampling campaign led by professionals and volunteers, supplemented by previously collected samples, we established a benchmark for understanding the current range of Pacific lamprey across a large portion of its range in the interior Columbia River basin. This approach could be tailored to refine range estimates for other wide-ranging aquatic species of conservation concern.


Asunto(s)
ADN Ambiental , Estados Unidos , Animales , Ríos , Lampreas/genética , Salmón/genética , Ecosistema
5.
BMC Public Health ; 21(1): 577, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757468

RESUMEN

BACKGROUND: We evaluated whether occupancy modeling, an approach developed for detecting rare wildlife species, could overcome inherent accuracy limitations associated with rapid disease tests to generate fast, accurate, and affordable SARS-CoV-2 prevalence estimates. Occupancy modeling uses repeated sampling to estimate probability of false negative results, like those linked to rapid tests, for generating unbiased prevalence estimates. METHODS: We developed a simulation study to estimate SARS-CoV-2 prevalence using rapid, low-sensitivity, low-cost tests and slower, high-sensitivity, higher cost tests across a range of disease prevalence and sampling strategies. RESULTS: Occupancy modeling overcame the low sensitivity of rapid tests to generate prevalence estimates comparable to more accurate, slower tests. Moreover, minimal repeated sampling was required to offset low test sensitivity at low disease prevalence (0.1%), when rapid testing is most critical for informing disease management. CONCLUSIONS: Occupancy modeling enables the use of rapid tests to provide accurate, affordable, real-time estimates of the prevalence of emerging infectious diseases like SARS-CoV-2.


Asunto(s)
COVID-19 , Tamizaje Masivo/métodos , SARS-CoV-2 , Teorema de Bayes , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Modelos Teóricos , Prevalencia , Sensibilidad y Especificidad
6.
J Hered ; 111(2): 169-181, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32161974

RESUMEN

The complex topography, climate, and geological history of Western North America have shaped contemporary patterns of biodiversity and species distributions in the region. Pacific martens (Martes caurina) are distributed along the northern Pacific Coast of North America with disjunct populations found throughout the Northwestern Forested Mountains and Marine West Coast Forest ecoregions of the West Coast. Martes in this region have been classified into subspecies; however, the subspecific designation has been extensively debated. In this study, we use genomic data to delineate conservation units of Pacific marten in the Sierra-Cascade-Coastal montane belt in the western United States. We analyzed the mitochondrial genome for 94 individuals to evaluate the spatial distribution and divergence times of major lineages. We further genotyped 401 individuals at 13 microsatellite loci to investigate major patterns of population structure. Both nuclear and mitochondrial DNA suggest substantial genetic substructure concordant with historical subspecies designations. Our results revealed that the region contains 2 distinct mitochondrial lineages: a Cascades/Sierra lineage that diverged from the Cascades/coastal lineage 2.23 (1.48-3.14 mya), consistent with orogeny of the Cascade Mountain chain. Interestingly, Pacific Martes share phylogeographic patterns similar with other sympatric taxa, suggesting that the complex geological history has shaped the biota of this region. The information is critical for conservation and management efforts, and further investigation of adaptive diversity is warranted following appropriate revision of conservation management designations.


Asunto(s)
Genética de Población , Genoma Mitocondrial , Mustelidae/genética , Animales , Conservación de los Recursos Naturales , Evolución Molecular , Bosques , Geología , Repeticiones de Microsatélite , América del Norte , Filogenia , Filogeografía , Análisis de Secuencia de ADN
7.
J Anim Ecol ; 87(3): 813-824, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29282715

RESUMEN

Determining how species coexist is critical for understanding functional diversity, niche partitioning and interspecific interactions. Identifying the direct and indirect interactions among sympatric carnivores that enable their coexistence is particularly important to elucidate because they are integral for maintaining ecosystem function. We studied the effects of removing nine fishers (Pekania pennanti) on their population dynamics and used this perturbation to elucidate the interspecific interactions among fishers, grey foxes (Urocyon cinereoargenteus) and ringtails (Bassariscus astutus). Grey foxes (family: Canidae) are likely to compete with fishers due to their similar body sizes and dietary overlap, and ringtails (family: Procyonidae), like fishers, are semi-arboreal species of conservation concern. We used spatial capture-recapture to investigate fisher population numbers and dynamic occupancy models that incorporated interspecific interactions to investigate the effects members of these species had on the colonization and persistence of each other's site occupancy. The fisher population showed no change in density for up to 3 years following the removals of fishers for translocations. In contrast, fisher site occupancy decreased in the years immediately following the translocations. During this same time period, site occupancy by grey foxes increased and remained elevated through the end of the study. We found a complicated hierarchy among fishers, foxes and ringtails. Fishers affected grey fox site persistence negatively but had a positive effect on their colonization. Foxes had a positive effect on ringtail site colonization. Thus, fishers were the dominant small carnivore where present and negatively affected foxes directly and ringtails indirectly. Coexistence among the small carnivores we studied appears to reflect dynamic spatial partitioning. Conservation and management efforts should investigate how intraguild interactions may influence the recolonization of carnivores to previously occupied landscapes.


Asunto(s)
Zorros/fisiología , Rasgos de la Historia de Vida , Mustelidae/fisiología , Procyonidae/fisiología , Animales , California , Femenino , Masculino , Modelos Biológicos , Oregon , Dinámica Poblacional , Predominio Social
8.
Glob Chang Biol ; 23(12): 5021-5023, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28741794

RESUMEN

For decades, it has been assumed that introgressive hybridization between introduced rainbow trout and native cutthroat trout in western North America will lead to genomic extinction of the latter. A broad-scale re-examination of their interaction indicates that ecological differences between these species and demographic processes are dictating the location and extent of their hybrid zones, and that runaway introgression between these taxa is unlikely.


Asunto(s)
Distribución Animal , Cambio Climático , Hibridación Genética , Trucha/genética , Animales , Ecología , Genoma , América del Norte
9.
Conserv Biol ; 31(1): 192-202, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27677418

RESUMEN

Conservation biologists recognize that a system of isolated protected areas will be necessary but insufficient to meet biodiversity objectives. Current approaches to connecting core conservation areas through corridors consider optimal corridor placement based on a single optimization goal: commonly, maximizing the movement for a target species across a network of protected areas. We show that designing corridors for single species based on purely ecological criteria leads to extremely expensive linkages that are suboptimal for multispecies connectivity objectives. Similarly, acquiring the least-expensive linkages leads to ecologically poor solutions. We developed algorithms for optimizing corridors for multispecies use given a specific budget. We applied our approach in western Montana to demonstrate how the solutions may be used to evaluate trade-offs in connectivity for 2 species with different habitat requirements, different core areas, and different conservation values under different budgets. We evaluated corridors that were optimal for each species individually and for both species jointly. Incorporating a budget constraint and jointly optimizing for both species resulted in corridors that were close to the individual species movement-potential optima but with substantial cost savings. Our approach produced corridors that were within 14% and 11% of the best possible corridor connectivity for grizzly bears (Ursus arctos) and wolverines (Gulo gulo), respectively, and saved 75% of the cost. Similarly, joint optimization under a combined budget resulted in improved connectivity for both species relative to splitting the budget in 2 to optimize for each species individually. Our results demonstrate economies of scale and complementarities conservation planners can achieve by optimizing corridor designs for financial costs and for multiple species connectivity jointly. We believe that our approach will facilitate corridor conservation by reducing acquisition costs and by allowing derived corridors to more closely reflect conservation priorities.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Ecología , Ecosistema , Montana
10.
Mol Ecol ; 25(13): 2967-77, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27086132

RESUMEN

The boom of massive parallel sequencing (MPS) technology and its applications in conservation of natural and managed populations brings new opportunities and challenges to meet the scientific questions that can be addressed. Genomic conservation offers a wide range of approaches and analytical techniques, with their respective strengths and weaknesses that rely on several implicit assumptions. However, finding the most suitable approaches and analysis regarding our scientific question are often difficult and time-consuming. To address this gap, a recent workshop entitled 'ConGen 2015' was held at Montana University in order to bring together the knowledge accumulated in this field and to provide training in conceptual and practical aspects of data analysis applied to the field of conservation and evolutionary genomics. Here, we summarize the expertise yield by each instructor that has led us to consider the importance of keeping in mind the scientific question from sampling to management practices along with the selection of appropriate genomics tools and bioinformatics challenges.


Asunto(s)
Conservación de los Recursos Naturales , Genética de Población/métodos , Genómica/métodos , Evolución Biológica , Congresos como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento , Proyectos de Investigación , Análisis de Secuencia de ADN
11.
Conserv Biol ; 28(1): 52-62, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24001256

RESUMEN

Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy-based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy-based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per-visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species.


Asunto(s)
Distribución Animal , Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Fenómenos de Retorno al Lugar Habitual , Modelos Biológicos , Mustelidae/fisiología , Animales , Noroeste de Estados Unidos , Sudoeste de Estados Unidos , Análisis Espacial
12.
Zootaxa ; 3755: 241-58, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24869819

RESUMEN

Fishes of the genus Cottus have long been taxonomically challenging because of morphological similarities among species and their tendency to hybridize, and a number of undescribed species may remain in this genus. We used a combination of genetic and morphological methods to delineate and describe Cottus schitsuumsh, Cedar Sculpin, a new species, from the upper Columbia River basin, Idaho-Montana, USA. Although historically confused with the Shorthead Sculpin (C. confusus), the genetic distance between C. schitsuumsh and C. confusus (4.84-6.29%) suggests these species are distant relatives. Moreover, the two species can be differentiated on the basis of lateral-line pores on the caudal peduncle, head width, and interpelvic width. Cottus schitsuumsh is also distinct from all other Cottus in this region in having a single small, skin-covered, preopercular spine. Haplotypes of mtDNA cytochrome oxidase c subunit 1 of C. schitsuumsh differed from all other members of the genus at three positions, had interspecific genetic distances typical for congeneric fishes (1.61-2.74% to nearest neighbors), and were monophyletic in maximum-likelihood trees. Microsatellite analyses confirmed these taxonomic groupings for species potentially sympatric with C. schitsuumsh and that fish used in morphological comparisons were unlikely to be introgressed. Its irregular distribution, in the Spokane River basin in Idaho and portions of the Clark Fork River basin in Montana, may have resulted from human-assisted translocation.


Asunto(s)
Peces/anatomía & histología , Peces/clasificación , Animales , Demografía , Peces/genética , Peces/fisiología , Idaho , Montana , Filogenia , Ríos , Especificidad de la Especie
13.
Ecol Evol ; 14(2): e11020, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38371866

RESUMEN

Environmental DNA (eDNA) sampling is a powerful tool for rapidly characterizing biodiversity patterns for specious, cryptic taxa with incomplete taxonomies. One such group that are also of high conservation concern are North American freshwater gastropods. In particular, springsnails of the genus Pyrgulopsis (Family: Hydrobiidae) are prevalent throughout the western United States where >140 species have been described. Many of the described species are narrow endemics known from a single spring or locality, and it is believed that there are likely many additional species which have yet to be described. The distribution of these species across the landscape is of interest because habitat loss and degradation, climate change, groundwater mining, and pollution have resulted in springsnail imperilment rates as high as 92%. Determining distributions with conventional sampling methods is limited by the fact that these snails are often <5 mm in length with few distinguishing morphological characters, making them both difficult to detect and to identify. We developed an eDNA metabarcoding protocol that is both inexpensive and capable of rapid, accurate detection of all known Pyrgulopsis species. When compared with conventional collection techniques, our pipeline consistently resulted in detection at sites previously known to contain Pyrgulopsis springsnails and at a cost per site that is likely to be substantially less than the conventional sampling and individual barcoding that has been done historically. Additionally, because our method uses eDNA extracted from filtered water, it is non-destructive and suitable for the detection of endangered species where "no take" restrictions may be in effect. This effort represents both a tool which is immediately applicable to taxa of high conservation concern across western North America and a case study in the broader application of eDNA sampling for landscape assessments of cryptic taxa of conservation concern.

14.
Mov Ecol ; 12(1): 49, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971747

RESUMEN

BACKGROUND: Studies of animal habitat selection are important to identify and preserve the resources species depend on, yet often little attention is paid to how habitat needs vary depending on behavioral state. Fishers (Pekania pennanti) are known to be dependent on large, mature trees for resting and denning, but less is known about their habitat use when foraging or moving within a home range. METHODS: We used GPS locations collected during the energetically costly pre-denning season from 12 female fishers to determine fisher habitat selection during two critical behavioral activities: foraging (moving) or resting, with a focus on response to forest structure related to past forest management actions since this is a primary driver of fisher habitat configuration. We characterized behavior based on high-resolution GPS and collar accelerometer data and modeled fisher selection for these two behaviors within a home range (third-order selection). Additionally, we investigated whether fisher use of elements of forest structure or other important environmental characteristics changed as their availability changed, i.e., a functional response, for each behavior type. RESULTS: We found that fishers exhibited specialist selection when resting and generalist selection when moving, with resting habitat characterized by riparian drainages with dense canopy cover and moving habitat primarily influenced by the presence of mesic montane mixed conifer forest. Fishers were more tolerant of forest openings and other early succession elements when moving than resting. CONCLUSIONS: Our results emphasize the importance of considering the differing habitat needs of animals based on their movement behavior when performing habitat selection analyses. We found that resting fishers are more specialist in their habitat needs, while foraging fishers are more generalist and will tolerate greater forest heterogeneity from past disturbance.

15.
Mol Ecol Resour ; 24(4): e13932, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38263813

RESUMEN

Taxon-specific quantitative PCR (qPCR) assays are commonly used for environmental DNA sampling-based inference of animal presence. These assays require thorough validation to ensure that amplification truly indicates detection of the target taxon, but a thorough validation is difficult when there are potentially many non-target taxa, some of which may have incomplete taxonomies. Here, we use a previously published, quantitative model of cross-amplification risk to describe a framework for assessing qPCR assay specificity when there is missing information and it is not possible to assess assay specificity for each individual non-target confamilial. In this framework, we predict assay specificity against unsampled taxa (non-target taxa without sequence data available) using the sequence information that is available for other confamilials. We demonstrate this framework using four case study assays for: (1) An endemic, freshwater arthropod (meltwater stonefly; Lednia tumana), (2) a globally distributed, marine ascidian (Didemnum perlucidum), (3) a continentally distributed freshwater crustacean (virile crayfish; Faxonius virilis, deanae and nais species complex) and (4) a globally distributed freshwater teleost (common carp; Cyprinus carpio and its close relative C. rubrofuscus). We tested the robustness of our approach to missing information by simulating application of our framework for all possible subsamples of 20-all non-target taxa. Our results suggest that the modelling framework results in estimates which are largely concordant with observed levels of cross-amplification risk using all available sequence data, even when there are high levels of data missingness. We explore potential limitations and extensions of this approach for assessing assay specificity and provide users with an R Markdown template for generating reproducible reports to support their own assay validation efforts.


Asunto(s)
Carpas , ADN Ambiental , Urocordados , Animales , Insectos , Agua Dulce
16.
Conserv Biol ; 27(1): 145-54, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23003217

RESUMEN

The importance of movement corridors for maintaining connectivity within metapopulations of wild animals is a cornerstone of conservation. One common approach for determining corridor locations is least-cost corridor (LCC) modeling, which uses algorithms within a geographic information system to search for routes with the lowest cumulative resistance between target locations on a landscape. However, the presentation of multiple LCCs that connect multiple locations generally assumes all corridors contribute equally to connectivity, regardless of the likelihood that animals will use them. Thus, LCCs may overemphasize seldom-used longer routes and underemphasize more frequently used shorter routes. We hypothesize that, depending on conservation objectives and available biological information, weighting individual corridors on the basis of species-specific movement, dispersal, or gene flow data may better identify effective corridors. We tested whether locations of key connectivity areas, defined as the highest 75th and 90th percentile cumulative weighted value of approximately 155,000 corridors, shift under different weighting scenarios. In addition, we quantified the amount and location of private land that intersect key connectivity areas under each weighting scheme. Some areas that appeared well connected when analyzed with unweighted corridors exhibited much less connectivity compared with weighting schemes that discount corridors with large effective distances. Furthermore, the amount and location of key connectivity areas that intersected private land varied among weighting schemes. We believe biological assumptions and conservation objectives should be explicitly incorporated to weight corridors when assessing landscape connectivity. These results are highly relevant to conservation planning because on the basis of recent interest by government agencies and nongovernmental organizations in maintaining and enhancing wildlife corridors, connectivity will likely be an important criterion for prioritization of land purchases and swaps.


Asunto(s)
Conservación de los Recursos Naturales/economía , Distribución Animal , Animales , Conservación de los Recursos Naturales/métodos , Costos y Análisis de Costo , Sistemas de Información Geográfica , Modelos Teóricos , Mustelidae/fisiología , Estados Unidos
17.
Ecol Evol ; 13(1): e9648, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644699

RESUMEN

Although wolves are wide-ranging generalist carnivores throughout their life cycle, during the pup-rearing season wolf activity is focused on natal den sites where pup survival depends upon pack members provisioning food. Because prey availability is influenced by habitat quality within the home range, we investigated the relative importance of prey species for adults and pups and further examined the relationship between habitat characteristics, wolf diet, and litter size on Prince of Wales Island (POW) in Southeast Alaska. During 2012-2020, we detected 13 active den sites within the home ranges of nine wolf packs. We estimated minimum pup counts using motion-detecting cameras and individual genotypes from noninvasive samples (hair: n = 322; scat: n = 227) and quantified wolf diet composition using fecal DNA metabarcoding (n = 538). We assessed habitat composition, configuration, and connectivity within denning and annual home ranges estimated using wolf GPS-collar data. Contrary to expectations, wolves had a more constricted diet during denning season (April 15-July 31), and within this season pups had a narrower dietary niche (species richness [S] = 4) focused more on deer (relative frequency of occurrence [O/I] = 0.924) than adults (S = 15; deer O/I = 0.591). Litter size had a positive relationship with the relative frequency of deer in a wolf pack's diet. Wolf consumption of deer was positively associated with the proportion of young-growth forest (≤25 years old) within denning and annual home ranges. High levels of vegetation patch interspersion, and the density of closed logging roads were also important predictors, suggesting these habitat qualities were influential for increasing the availability of deer to wolves. Our results contrast with previous research indicating wolf pup diets included more alternate prey (i.e., beaver) than adults and emphasize the importance of deer to wolf viability on POW, especially during denning season.

18.
Trends Ecol Evol ; 38(11): 1072-1084, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37479555

RESUMEN

Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.

19.
R Soc Open Sci ; 10(2): 220437, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844808

RESUMEN

Conserving genetic connectivity is fundamental to species persistence, yet rarely is made actionable into spatial planning for imperilled species. Climate change and habitat degradation have added urgency to embrace connectivity into networks of protected areas. Our two-step process integrates a network model with a functional connectivity model, to identify population centres important to maintaining genetic connectivity then to delineate those pathways most likely to facilitate connectivity thereamong for the greater sage-grouse (Centrocercus urophasianus), a species of conservation concern ranging across eleven western US states and into two Canadian provinces. This replicable process yielded spatial action maps, able to be prioritized by importance to maintaining range-wide genetic connectivity. We used these maps to investigate the efficacy of 3.2 million ha designated as priority areas for conservation (PACs) to encompass functional connectivity. We discovered that PACs encompassed 41.1% of cumulative functional connectivity-twice the amount of connectivity as random-and disproportionately encompassed the highest-connectivity landscapes. Comparing spatial action maps to impedances to connectivity such as cultivation and woodland expansion allows both planning for future management and tracking outcomes from past efforts.

20.
Animals (Basel) ; 12(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35625106

RESUMEN

Wildlife dispersal directly influences population expansion patterns, and may have indirect effects on the spread of wildlife diseases. Despite its importance to conservation, little is known about dispersal for several species. Dispersal processes in expanding wolf (Canis lupus) populations in Europe is not well documented. Documenting the natural dispersal pattern of the expanding wolf population in the Alps might help understanding the overall population dynamics and identifying diseases that might be connected with the process. We documented 55 natural dispersal events of the expanding Italian wolf alpine population over a 20-year period through the use of non-invasive genetic sampling. We examined a 16-locus microsatellite DNA dataset of 2857 wolf samples mainly collected in the Western Alps. From this, we identified 915 individuals, recaptured 387 (42.3%) of individuals, documenting 55 dispersal events. On average, the minimum straight dispersal distance was 65.8 km (±67.7 km), from 7.7 km to 517.2 km. We discussed the potential implications for maintaining genetic diversity of the population and for wildlife diseases spreading.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA