Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674513

RESUMEN

Pharmacogenomics is a rapidly growing field with the goal of providing personalized care to every patient. Previously, we developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform for multiscale therapeutic discovery to screen optimal compounds for any indication/disease by performing analytics on their interactions using large protein libraries. We implemented a comprehensive precision medicine drug discovery pipeline within the CANDO platform to determine which drugs are most likely to be effective against mutant phenotypes of non-small cell lung cancer (NSCLC) based on the supposition that drugs with similar interaction profiles (or signatures) will have similar behavior and therefore show synergistic effects. CANDO predicted that osimertinib, an EGFR inhibitor, is most likely to synergize with four KRAS inhibitors.Validation studies with cellular toxicity assays confirmed that osimertinib in combination with ARS-1620, a KRAS G12C inhibitor, and BAY-293, a pan-KRAS inhibitor, showed a synergistic effect on decreasing cellular proliferation by acting on mutant KRAS. Gene expression studies revealed that MAPK expression is strongly correlated with decreased cellular proliferation following treatment with KRAS inhibitor BAY-293, but not treatment with ARS-1620 or osimertinib. These results indicate that our precision medicine pipeline may be used to identify compounds capable of synergizing with inhibitors of KRAS G12C, and to assess their likelihood of becoming drugs by understanding their behavior at the proteomic/interactomic scales.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteómica , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Combinación de Medicamentos
2.
Biochem Biophys Res Commun ; 621: 116-121, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35820281

RESUMEN

METH and HIV Tat treatment results in increased oxidative stress which affects cellular metabolism and causes DNA damage in the treated microglia. Both, METH ± HIV Tat impair mitochondrial respiration, leading to dysfunction in bioenergetics and increased ROS in microglial cells. Our data indicate that mitochondrial dysfunction may be key to the METH and/or HIV Tat-induced neuropathology. METH and/or HIV Tat induced changes in the protein, lipid and nucleotide concentration in microglial cells were measured by Raman Spectroscopy, and we speculate that these fundamental molecular-cellular changes in microglial cells contribute to the neuropathology that is associated with METH abuse in HIV patients.


Asunto(s)
Infecciones por VIH , Metanfetamina , Infecciones por VIH/metabolismo , Humanos , Metanfetamina/farmacología , Mitocondrias/metabolismo , Espectrometría Raman , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
3.
Immunology ; 153(3): 387-396, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28992358

RESUMEN

Asthma is a chronic inflammatory respiratory disease characterized by airway inflammation, airway hyperresponsiveness and reversible airway obstruction. Understanding the mechanisms that underlie the various endotypes of asthma could lead to novel and more personalized therapies for individuals with asthma. Using a tissue inhibitor of metalloproteinases 1 (TIMP-1) knockout murine allergic asthma model, we previously showed that TIMP-1 deficiency results in an asthma phenotype, exhibiting airway hyperreactivity, enhanced eosinophilic inflammation and T helper type 2 cytokine gene and protein expression following sensitization with ovalbumin. In the current study, we compared the expression of Galectins and other key cytokines in a murine allergic asthma model using wild-type and TIMP-1 knockout mice. We also examined the effects of Galectin-3 (Gal-3) inhibition on a non-T helper type 2 cytokine interleukin-17 (IL-17) to evaluate the relationship between Gal-3 and the IL-17 axis in allergic asthma. Our results showed a significant increase in Gal-3, IL-17 and transforming growth factor-ß1 gene expression in lung tissue isolated from an allergic asthma murine model using TIMP-1 knockout. Gal-3 gene and protein expression levels were also significantly higher in lung tissue from an allergic asthma murine model using TIMP-1 knockout. Our data show that Gal-3 may regulate the IL-17 axis and play a pivotal role in the modulation of inflammation during experimental allergic asthma.


Asunto(s)
Asma/metabolismo , Hiperreactividad Bronquial/metabolismo , Galectina 3/metabolismo , Neumonía/metabolismo , Hipersensibilidad Respiratoria/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Pulmón , Ratones , Ratones Noqueados , Células Th2/metabolismo
4.
AIDS Behav ; 22(10): 3198-3208, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29705930

RESUMEN

We evaluated national trends of in-hospital discharge rates, mortality outcomes, health care costs, length of stay in HIV patients with cognitive disorders. Neurological involvement in HIV is commonly associated with cognitive impairment termed as HIV-associated neurocognitive disorder (HAND) which includes a spectrum of neurocognitive dysfunction associated with HIV infection. Although severe and progressive neurocognitive impairment has become rare in HIV patients in the era of potent antiretroviral therapy, a majority of HIV patients have mild to moderate degree of neurocognitive impairment. Study population for this analysis was derived from the Nationwide Inpatient Sample from 2005 to 2014. Patients with ICD-9 code of HIV (042) with discharge diagnosis (Dx) listed top 1 through 5 were included in the analysis. Within this population, we identified patients with cognitive impairment using ICD-9 codes of 294 (persistent mental disorders; organic psychotic brain syndromes (chronic), 323.9 (encephalitis, myelitis, and encephalomyelitis), 331.83 (mild cognitive impairment) with Dx listed from 1 to 25. Patient variables obtained included: age, race, gender, length of stay, in-hospital mortality and insurance status. Hospital level variables included teaching status, location and region of country. SAS 9.4 software was used for data analysis. Comparisons of variables between hospitalized HIV patients with and without HAND showed significant increase in cost per hospital admissions, longer hospital stay and higher risk of mortality in patients with HAND.


Asunto(s)
Disfunción Cognitiva/economía , Infecciones por VIH/economía , Costos de Hospital/tendencias , Mortalidad Hospitalaria/tendencias , Tiempo de Internación/tendencias , Adulto , Anciano , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/mortalidad , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/mortalidad , Humanos , Pacientes Internos , Tiempo de Internación/economía , Masculino , Persona de Mediana Edad , Morbilidad , Estados Unidos/epidemiología
5.
Immunol Invest ; 46(8): 833-846, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29058549

RESUMEN

We synthesized and characterized curcumin-stabilized silver nanoparticles (Cur-AgNP) and found them to be 45 nm by dynamic light scattering with a maximum absorbance at 406 nm. We evaluated Cur-AgNP for immunomodulatory activities and their potential as an antiretroviral agent. The antiretroviral effects of Cur-AgNP were determined in ACH-2 cells latently infected with human immunodeficiency virus (HIV)-1. ACH-2 cells, 200,000/ml, were treated with Cur-AgNP for 24-48 h. Expression of HIV-1 LTR and p24, the pro-inflammatory cytokines, IL-1ß, TNF-α, and NF-κB was quantitated. Treatment of ACH-2 cells latently infected with HIV-1 with Cur-AgNP produced no toxic effects but significantly inhibited the expression of HIV-1 LTR (-73%, P < 0.01) and p24 (-57%, P < 0.05), IL-1ßα (-61%, P < 0.01), TNF-αα (-54%, P < 0.05), IL-6 (-68%, P < 0.01), and NF-κB (-79%, P < 0.0001) as compared to untreated controls. Thus, Cur-AgNP have therapeutic potential as direct antiretroviral agents, as well as having immunomodulatory activities inhibiting the expression of pro-inflammatory mediators induced by infection with HIV-1. Experimental controls, such as curcumin alone, and conventional silver nanoparticles capped with citric acid, produced no similar biological effects. We conclude that treatment of HIV-1 infected cells with Cur-AgNP significantly reduced replication of HIV by inhibition of NF-κB nuclear translocation and the downstream expression of the pro-inflammatory cytokines IL-1ß, TNF-α, and IL-6. Subsequent in vivo studies with Cur-AgNP using a humanized mouse model of HIV infection are underway.


Asunto(s)
Antirretrovirales/farmacología , Curcumina/farmacología , Infecciones por VIH/inmunología , VIH-1/fisiología , Factores Inmunológicos/farmacología , Nanopartículas del Metal/uso terapéutico , Linfocitos T/inmunología , Línea Celular , Curcumina/química , Citocinas/metabolismo , Regulación de la Expresión Génica , Proteína p24 del Núcleo del VIH/metabolismo , Duplicado del Terminal Largo de VIH/genética , Humanos , Mediadores de Inflamación/metabolismo , Nanopartículas del Metal/química , FN-kappa B/metabolismo , Plata/química , Linfocitos T/patología , Linfocitos T/virología , Latencia del Virus , Replicación Viral
6.
Immunol Invest ; 46(8): 816-832, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29058550

RESUMEN

The complement system which is a critical mediator of innate immunity plays diverse roles in the neuropathogenesis of HIV-1 infection such as clearing HIV-1 and promoting productive HIV-1 replication. In the development of HIV-1 associated neurological disorders (HAND), there may be an imbalance between complement activation and regulation, which may contribute to the neuronal damage as a consequence of HIV-1 infection. It is well recognized that opiate abuse exacerbates HIV-1 neuropathology, however, little is known about the role of complement proteins in opiate induced neuromodulation, specifically in the presence of co-morbidity such as HIV-1 infection. Complement levels are significantly increased in the HIV-1-infected brain, thus HIV-induced complement synthesis may represent an important mechanism for the pathogenesis of AIDS in the brain, but remains underexplored. Anti-HIV-1 antibodies are able to initiate complement activation in HIV-1 infected CNS cells such as microglia and astrocytes during the course of disease progression; however, this complement activation fails to clear and eradicate HIV-1 from infected cells. In addition, the antiretroviral agents used for HIV therapy cause dysregulation of lipid metabolism, endothelial, and adipocyte cell function, and activation of pro-inflammatory cytokines. We speculate that both HIV-1 and opiates trigger a cytokine-mediated pro-inflammatory stimulus that modulates the complement cascade to exacerbate the virus-induced neurological damage. We examined the expression levels of C1q, SC5b-9, C5L2, C5aR, C3aR, and C9 key members of the complement cascade both in vivo in post mortem brain frontal cortex tissue from patients with HAND who used/did not use heroin, and in vitro using human microglial cultures treated with HIV tat and/or heroin. We observed significant expression of C1q and SC5b-9 by immunofluorescence staining in both the brain cortical and hippocampal region in HAND patients who abused heroin. Additionally, we observed increased gene expression of C5aR, C3aR, and C9 in the brain tissue of both HIV-1 infected patients with HAND who abused and did not abuse heroin, as compared to HIV negative controls. Our results show a significant increase in the expression of complement proteins C9, C5L2, C5aR, and C3aR in HIV transfected microglia and an additional increase in the levels of these complement proteins in heroin-treated HIV transfected microglia. This study highlights the a) potential roles of complement proteins in the pathogenesis of HIV-1-related neurodegenerative disorders; b) the combined effect of an opiate, like heroin, and HIV viral protein like HIV tat on complement proteins in normal human microglial cells and HIV transfected microglial cells. In the context of HAND, targeting selective steps in the complement cascade could help ameliorating the HIV burden in the CNS, thus investigations of complement-related therapeutic approaches for the treatment of HAND are warranted.


Asunto(s)
Nefropatía Asociada a SIDA/inmunología , Proteínas del Sistema Complemento/metabolismo , Lóbulo Frontal/metabolismo , Infecciones por VIH/inmunología , VIH-1/fisiología , Dependencia de Heroína/inmunología , Mediadores de Inflamación/metabolismo , Microglía/metabolismo , Nefropatía Asociada a SIDA/epidemiología , Cadáver , Células Cultivadas , Comorbilidad , Activación de Complemento , Citocinas/metabolismo , Infecciones por VIH/epidemiología , Dependencia de Heroína/epidemiología , Humanos , Inmunomodulación , Microglía/patología , Microglía/virología , Regulación hacia Arriba , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
8.
Immunology ; 148(4): 387-406, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27159450

RESUMEN

Interleukin-8 (IL-8) is a pro-angiogenic cytokine associated with aggressive prostate cancer (CaP). We detected high levels of IL-8 in sera from patients with CaP compared with healthy controls and patients with benign prostatic hypertrophy. This study examines the role of IL-8 in the pathogenesis of metastatic prostate cancer. We developed a biocompatible, cationic polylactide (CPLA) nanocarrier to complex with and efficiently deliver IL-8 small interfering RNA (siRNA) to CaP cells in vitro and in vivo. CPLA IL-8 siRNA nanocomplexes (nanoplexes) protect siRNA from rapid degradation, are non-toxic, have a prolonged lifetime in circulation, and their net positive charge facilitates penetration of cell membranes and subsequent intracellular trafficking. Administration of CPLA IL-8 siRNA nanoplexes to immunodeficient mice bearing human CaP tumours produced significant antitumour activities with no adverse effects. Systemic (intravenous) or local intra-tumour administration of IL-8 siRNA nanoplexes resulted in significant inhibition of CaP growth. Magnetic resonance imaging and ultrasonography of experimental animals demonstrated reduction of tumour perfusion in vivo following nanoplex treatment. Staining of tumour sections for CD31 confirmed significant damage to tumour neovasculature after nanoplex therapy. These studies demonstrate the efficacy of IL-8 siRNA nanotherapy for advanced, treatment-resistant human CaP.


Asunto(s)
Interleucina-8/metabolismo , Nanopartículas/administración & dosificación , Neovascularización Patológica/terapia , Neoplasias de la Próstata/terapia , ARN Interferente Pequeño/genética , Animales , Materiales Biocompatibles , Línea Celular Tumoral , Humanos , Interleucina-8/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Nanopartículas/química , Metástasis de la Neoplasia , Poliésteres/química , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Proteome Res ; 14(12): 5225-39, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26484939

RESUMEN

For decades, epidemiological studies have found significant differences in the susceptibility to disease progression among HIV-carrying patients. One unique group of HIV-1-positive patients, the long-term-nonprogressors (LTNP), exhibits far superior ability in virus control compared with normal-progressors (NP), which proceed to Acquired Immune Deficiency Syndrome (AIDS) much more rapidly. Nonetheless, elucidation of the underlying mechanisms of virus control in LTNP is highly valuable in disease management and treatment but remains poorly understood. Peripheral blood mononuclear cells (PBMC) have been known to play important roles in innate immune responses and thereby would be of great interest for the investigation of the mechanisms of virus defense in LTNP. Here, we described the first comparative proteome analysis of PBMC from LTNP (n = 10) and NP (n = 10) patients using a reproducible ion-current-based MS1 approach, which includes efficient and reproducible sample preparation and chromatographic separation followed by an optimized pipeline for protein identification and quantification. This strategy enables analysis of many biological samples in one set with high quantitative precision and extremely low missing data. In total, 925 unique proteins were quantified under stringent criteria without missing value in any of the 20 subjects, and 87 proteins showed altered expressions between the two patient groups. These proteins are implicated in key processes such as cytoskeleton organization, defense response, apoptosis regulation, intracellular transport, etc., which provided novel insights into the control of disease progressions in LTNP versus NP, and the expression and phosphorylation states of key regulators were further validated by immunoassay. For instance, (1) SAMH1, a potent and "hot" molecule facilitating HIV-1 defense, was for the first time found elevated in LTNP compared with NP or healthy controls; elevated proteins from IFN-α response pathway may also contribute to viral control in LTNP; (2) decreased proapoptotic protein ASC along with the elevation of antiapoptotic proteins may contribute to the less apoptotic profile in PBMC of LTNP; and (3) elevated actin polymerization and less microtubule assembly that impede viral protein transport were first observed in LTNP. These results not only enhanced the understanding of the mechanisms for nonprogression of LTNP, but also may afford highly valuable clues to direct therapeutic efforts. Moreover, this work also demonstrated the ion-current-based MS1 approach as a reliable tool for large-scale clinical research.


Asunto(s)
Infecciones por VIH/sangre , Infecciones por VIH/etiología , Sobrevivientes de VIH a Largo Plazo , VIH-1 , Proteómica/métodos , Adulto , Anciano , Proteínas Reguladoras de la Apoptosis/sangre , Proteínas Reguladoras de la Apoptosis/aislamiento & purificación , Proteínas Sanguíneas/aislamiento & purificación , Proteínas Sanguíneas/metabolismo , Proteínas del Citoesqueleto/sangre , Proteínas del Citoesqueleto/aislamiento & purificación , Progresión de la Enfermedad , Femenino , Infecciones por VIH/inmunología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Proteoma/aislamiento & purificación , Proteínas Virales/metabolismo , Adulto Joven
11.
Immunology ; 146(1): 130-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26059553

RESUMEN

The blood-brain barrier (BBB) plays a crucial role in brain homeostasis, thereby maintaining the brain environment precise for optimal neuronal function. Its dysfunction is an intriguing complication of systemic lupus erythematosus (SLE). SLE is a systemic autoimmune disorder where neurological complications occur in 5-50% of cases and is associated with impaired BBB integrity. Complement activation occurs in SLE and is an important part of the clinical profile. Our earlier studies demonstrated that C5a generated by complement activation caused the loss of brain endothelial layer integrity in rodents. The goal of the current study was to determine the translational potential of these studies to a human system. To assess this, we used a two dimensional in vitro BBB model constructed using primary human brain microvascular endothelial cells and astroglial cells, which closely emulates the in vivo BBB allowing the assessment of BBB integrity. Increased permeability monitored by changes in transendothelial electrical resistance and cytoskeletal remodelling caused by actin fiber rearrangement were observed when the cells were exposed to lupus serum and C5a, similar to the observations in mice. In addition, our data show that C5a/C5aR1 signalling alters nuclear factor-κB translocation into nucleus and regulates the expression of the tight junction proteins, claudin-5 and zonula occludens 1 in this setting. Our results demonstrate for the first time that C5a regulates BBB integrity in a neuroinflammatory setting where it affects both endothelial and astroglial cells. In addition, we also demonstrate that our previous findings in a mouse model, were emulated in human cells in vitro, bringing the studies one step closer to understanding the translational potential of C5a/C5aR1 blockade as a promising therapeutic strategy in SLE and other neurodegenerative diseases.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Complemento C5a/metabolismo , Lupus Eritematoso Sistémico/patología , Receptor de Anafilatoxina C5a/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Activo de Núcleo Celular , Adolescente , Astrocitos/inmunología , Encéfalo/irrigación sanguínea , Células Cultivadas , Niño , Claudina-5/biosíntesis , Activación de Complemento/inmunología , Complemento C5a/inmunología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Impedancia Eléctrica , Células Endoteliales/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Moléculas de Adhesión de Unión/biosíntesis , Lupus Eritematoso Sistémico/inmunología , Masculino , FN-kappa B/metabolismo , Transporte de Proteínas , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/inmunología , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/biosíntesis
12.
Prostate ; 75(12): 1285-99, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25963523

RESUMEN

BACKGROUND: PSA is a biomarker for diagnosis and management of prostate cancer. PSA is known to have anti-tumorigenic activities, however, the physiological role of PSA in prostate tumor progression is not well understood. METHODS: Five candidate peptides identified based upon computer modeling of the PSA crystal structure and hydrophobicity were synthesized at >95% purity. The peptides in a linear form, and a constrained form forced by a di-sulfide bond joining the two ends of the peptide, were investigated for anti-angiogenic activity in HUVEC. RESULTS: None of the five PSA-mimetic peptides exhibited PSA-like serine protease activity. Two of the peptides demonstrated significant anti-angiogenic activity in HUVEC based on (i) inhibition of cell migration and invasion; (ii) inhibition of tube formation in Matrigel; (iii) anti-angiogenic activity in a sprouting assay; and (iv) altered expression of pro- and anti-angiogenic growth factors. Constrained PSA-mimetic peptides had greater anti-angiogenic activity than the corresponding linearized form. Complexing of PSA with ACT eliminated PSA enzymatic activity and reduced anti-angiogenic activity. In contrast, ACT had no effect on the anti-angiogenic effects of the linear or constrained PSA-mimetic peptides. Modeling of the ACT-PSA complex demonstrated ACT sterically blocks the anti-angiogenic activity of the two bioactive peptides. CONCLUSIONS: The interaction of a hydrophilic domain on the surface of the PSA molecule with a target on the cell membrane of prostate endothelial and epithelial cells was responsible for the anti-angiogenic or anti-tumorigenic activity of PSA: enzymatic activity was not associated with anti-angiogenic effects. Furthermore, since PSA and ACT are both expressed within the human prostate tissue microenvironment, the balance of their expression may represent a mechanism for endogenous regulation of tissue angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Péptidos/farmacología , Antígeno Prostático Específico/farmacología , Inhibidores de la Angiogénesis/química , Humanos , Masculino , Modelos Teóricos , Péptidos/química , Antígeno Prostático Específico/química , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
J Immunol ; 188(8): 3757-65, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22430735

RESUMEN

Morphine is a widely abused, addictive drug that modulates immune function. Macrophages are a primary reservoir of HIV-1; therefore, they play a role in the development of this disease, as well as impact the overall course of disease progression. Galectin-1 is a member of a family of ß-galactoside-binding lectins that are soluble adhesion molecules and that mediate direct cell-pathogen interactions during HIV-1 viral adhesion. Because the drug abuse epidemic and the HIV-1 epidemic are closely interrelated, we propose that increased expression of galectin-1 induced by morphine may modulate HIV-1 infection of human monocyte-derived macrophages (MDMs). In this article, we show that galectin-1 gene and protein expression are potentiated by incubation with morphine. Confirming previous studies, morphine alone or galectin-1 alone enhance HIV-1 infection of MDMs. Concomitant incubation with exogenous galectin-1 and morphine potentiated HIV-1 infection of MDMs. We used a nanotechnology approach that uses gold nanorod-galectin-1 small interfering RNA complexes (nanoplexes) to inhibit gene expression for galectin-1. We found that nanoplexes silenced gene expression for galectin-1, and they reversed the effects of morphine on galectin-1 expression. Furthermore, the effects of morphine on HIV-1 infection were reduced in the presence of the nanoplex.


Asunto(s)
Galectina 1/inmunología , VIH-1/inmunología , Macrófagos/inmunología , Morfina/farmacología , Narcóticos/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Células Cultivadas , Galectina 1/genética , Galectina 1/farmacología , Expresión Génica , Silenciador del Gen , Oro , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/virología , Nanotubos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/inmunología , Transducción de Señal , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
14.
Clin Chim Acta ; 556: 117830, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354999

RESUMEN

Protease inhibitors (PIs) are associated with an incidence of lipodystrophy among people living with HIV(PLHIV). Lipodystrophiesare characterised by the loss of adipose tissue. Evidence suggests that a patient's lipodystrophy phenotype is influenced by genetic mutation, age, gender, and environmental and genetic factors, such as single-nucleotide variants (SNVs). Pathogenic variants are considered to cause a more significant loss of adipose tissue compared to non-pathogenic. Lipid metabolising enzymes and transporter genes have a role in regulating lipoprotein metabolism and have been associated with lipodystrophy in HIV-infected patients (LDHIV). The long-term effect of the lipodystrophy syndrome is related to cardiovascular diseases (CVDs). Hence, we determined the SNVs of lipid metabolising enzymes and transporter genes in a total of 48 patient samples, of which 24 were with and 24 were without HIV-associated lipodystrophy (HIVLD) using next-generation sequencing. A panel of lipid metabolism, transport and elimination genes were sequenced. Three novel heterozygous non-synonymous variants at exon 8 (c.C1400A:p.S467Y, c.G1385A:p.G462E, and c.T1339C:p.S447P) in the ABCB6 gene were identified in patients with lipodystrophy. One homozygous non-synonymous SNV (exon5:c.T358C:p.S120P) in the GRN gene was identified in patients with lipodystrophy. One novelstop-gain SNV (exon5:c.C373T:p.Q125X) was found in the GRN gene among patients without lipodystrophy. Patients without lipodystrophy had one homozygous non-synonymous SNV (exon9:c.G1462T:p.G488C) in the ABCB6 gene. Our findings suggest that novel heterozygous non-synonymous variants in the ABCB6 gene may contribute to defective protein production, potentially intensifying the severity of lipodystrophy. Additionally, identifying a stop-gain SNV in the GRN gene among patients without lipodystrophy implies a potential role in the development of HIVLD.


Asunto(s)
Infecciones por VIH , Síndrome de Lipodistrofia Asociada a VIH , Lipodistrofia , Humanos , Síndrome de Lipodistrofia Asociada a VIH/genética , Síndrome de Lipodistrofia Asociada a VIH/complicaciones , Lipodistrofia/genética , Lipodistrofia/complicaciones , Lipodistrofia/epidemiología , Mutación , Tejido Adiposo , Lípidos , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Transportadoras de Casetes de Unión a ATP/genética , Progranulinas/genética
15.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765857

RESUMEN

The standard of care chemotherapy drug presently used to treat castration-resistant prostate cancer (CRPC), docetaxel (Doc), also develops chemoresistance, thereby reducing its clinical utility. Since resistance to chemotherapy drugs can be overcome by co-treatment with plant-based bio-active compounds we undertook the present study to evaluate if quercetin (Que), a flavonoid present in plants such as onions, apples, olives, and grapes can enhance the efficacy of Doc. We studied the separate and combined effects of Que and Doc at different doses and different combination approaches in two different prostate cancer cell lines, DU-145 (moderately aggressive) and PC-3 (very aggressive), and assessed the effects of these combinations on viability, proliferation, and apoptosis. Monotherapy with these drugs showed dose-dependent cytotoxicity; however, only Doc monotherapy showed a statistically significant difference in IC50 levels (IC50 = 4.05 ± 0.52 nM for PC-3 and IC50 = 2.26 ± 0.22 nM for DU-145). In combination treatment, we used three different treatment approaches (TAP). The concentrations and range analyzed were chosen based on the approximate cytotoxicity of 30-50% when the drugs were used individually. Our observations indicate that the most beneficial effect of the Que and Doc combination was obtained with the TAP-2 approach, which is pre-treatment with all doses of Que for 24 h followed by low doses of Doc for another 24 h. Using this approach, we observed synergism at low concentrations of Doc (0.5 and 1.0 nM) and all concentrations of Que. An additive effect was observed at moderate and high concentrations of Doc (1.5, 2.0, and 2.5 nM) and all concentrations of Que in both cell lines. The TAP-2 strategy was also helpful in overcoming Doc resistance in resistant CaP cells. In summary, Que improved the therapeutic effect of Doc in CRPC, and it is proposed that this improvement is mediated through multiple mechanisms. This study provides a novel therapeutic modality for an effective combination using Doc and Que to enhance the efficacy of Doc in an innocuous manner for Doc resistance and CRPC treatment.

16.
Crit Rev Ther Drug Carrier Syst ; 40(4): 69-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37075068

RESUMEN

Treatments for late-stage prostate cancer (CaP) have not been very successful. Frequently, advanced CaP progresses to castration-resistant prostate cancer (CRPC), with 50#37;-70% of patients developing bone metastases. CaP with bone metastasis-associated clinical complications and treatment resistance presents major clinical challenges. Recent advances in the formulation of clinically applicable nanoparticles (NPs) have attracted attention in the fields of medicine and pharmacology with applications to cancer and infectious and neurological diseases. NPs have been rendered biocompatible, pose little to no toxicity to healthy cells and tissues, and are engineered to carry large therapeutic payloads, including chemo- and genetic therapies. Additionally, if required, targeting specificity can be achieved by chemically coupling aptamers, unique peptide ligands, or monoclonal antibodies to the surface of NPs. Encapsulating toxic drugs within NPs and delivering them specifically to their cellular targets overcomes the problem of systemic toxicity. Encapsulating highly labile genetic therapeutics such as RNA within NPs provides a protective environment for the payload during parenteral administration. The loading efficiencies of NPs have been maximized while the controlled their therapeutic cargos has been released. Theranostic ("treat and see") NPs have developed combining therapy with imaging capabilities to provide real-time, image-guided monitoring of the delivery of their therapeutic payloads. All of these NP accomplishments have been applied to the nanotherapy of late-stage CaP, offering a new opportunity for a previously dismal prognosis. This article gives an update on current developments in the use of nanotechnology for treating late-stage, castration-resistant CaP.


Asunto(s)
Neoplasias Óseas , Nanopartículas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/terapia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Nanopartículas/uso terapéutico , Neoplasias Óseas/terapia , Terapia Genética
17.
Microorganisms ; 11(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375116

RESUMEN

Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.

18.
Front Cardiovasc Med ; 10: 1177054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324630

RESUMEN

HIV-associated lipodystrophy (HIVLD) is a metabolic condition with an irregularity in the production of lipoprotein particles, and its occurrence varies among HIV-infected patients. MTP and ABCG2 genes have a role in the transport of lipoproteins. The polymorphisms of MTP -493G/T and ABCG2 34G/A affect its expression and influence the secretion and transportation of lipoproteins. Hence, we investigated the MTP -493G/T and ABCG2 34G/A polymorphisms in 187 HIV-infected patients (64 with HIVLD and 123 without HIVLD) along with 139 healthy controls using polymerase chain reaction (PCR)-restriction fragment length polymorphism and expression analysis using real-time PCR. ABCG2 34A allele showed an insignificantly reduced risk of LDHIV severity [P = 0.07, odds ratio (OR) = 0.55]. MTP -493T allele exhibited a non-significantly reduced risk for the development of dyslipidemia (P = 0.08, OR = 0.71). In patients with HIVLD, the ABCG2 34GA genotype was linked with impaired low-density lipoprotein levels and showed a reduced risk for LDHIV severity (P = 0.04, OR = 0.17). In patients without HIVLD, the ABCG2 34GA genotype was associated with impaired triglyceride levels with marginal significance and showed an increased risk for the development of dyslipidemia (P = 0.07, OR = 2.76). The expression level of MTP gene was 1.22-fold decreased in patients without HIVLD compared with that in patients with HIVLD. ABCG2 gene was upregulated 2.16-fold in patients with HIVLD than in patients without HIVLD. In conclusion, MTP -493C/T polymorphism influences the expression level of MTP in patients without HIVLD. Individuals without HIVLD having ABCG2 34GA genotype with impaired triglyceride levels may facilitate dyslipidemia risk.

19.
Immunol Invest ; 41(4): 337-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21864113

RESUMEN

Inhibition of Matrix metalloproteinase-9 (MMP-9) activity using delivery of short interfering RNA (siRNA) molecules to brain microvascular endothelial cells (BMVECs) that constitute the BBB may have a significant impact on reducing the BBB permeability. Gold nano rods (GNRs) can electrostatically bind with MMP-9 siRNA to form a nanoplex and the uptake of this nanoplex by BMVEC cells can result in suppression of MMP-9 expression. The current study explores if this GNR-MMP-9 siRNA nanoplex gene silencing modulates the expression of tight junction (TJ) proteins in the BMVEC. The endothelial TJ's of the BBB play a critical role in controlling cellular traffic into the central nervous system. We hypothesize that silencing of the MMP-9 gene expression in BMVEC will increase the expression of TJ proteins thereby decrease endothelial permeability. Our results showed a significant increase in the gene and protein expression of TJ proteins: ZO-1, Occludin and Claudin-5 in BMVEC cells that were transfected with the GNRs-siRNA-MMP-9 nanoplex suggesting that BBB disruption, which results from loss of TJ function due to MMP-9 activation during neuroinflammation can be prevented by silencing MMP-9 expression.


Asunto(s)
Encéfalo/metabolismo , Endotelio Vascular/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz , Nanotubos , ARN Interferente Pequeño/metabolismo , Supervivencia Celular , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Activación Enzimática , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Microvasos/citología , Nanotubos/química , Nanotubos/ultraestructura , Tamaño de la Partícula , ARN Interferente Pequeño/química , Electricidad Estática , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Transfección
20.
Proc Natl Acad Sci U S A ; 106(14): 5546-50, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19307583

RESUMEN

Drug abuse is a worldwide health concern in which addiction involves activation of the dopaminergic signaling pathway in the brain. Here, we introduce a nanotechnology approach that utilizes gold nanorod-DARPP-32 siRNA complexes (nanoplexes) that target this dopaminergic signaling pathway in the brain. The shift in the localized longitudinal plasmon resonance peak of gold nanorods (GNRs) was used to show their interaction with siRNA. Plasmonic enhanced dark field imaging was used to visualize the uptake of these nanoplexes in dopaminergic neurons in vitro. Gene silencing of the nanoplexes in these cells was evidenced by the reduction in the expression of key proteins (DARPP-32, ERK, and PP-1) belonging to this pathway, with no observed cytotoxicity. Moreover, these nanoplexes were shown to transmigrate across an in vitro model of the blood-brain barrier (BBB). Therefore, these nanoplexes appear to be suited for brain-specific delivery of appropriate siRNA for therapy of drug addiction and other brain diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Oro , Nanotubos , Neuronas/metabolismo , ARN Interferente Pequeño/administración & dosificación , Trastornos Relacionados con Sustancias/terapia , Barrera Hematoencefálica , Dopamina , Fosfoproteína 32 Regulada por Dopamina y AMPc/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Silenciador del Gen , Humanos , Nanotecnología/métodos , ARN Interferente Pequeño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA