Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Blood Cancer ; 67(12): e28639, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32975370

RESUMEN

BACKGROUND: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive form of soft-tissue sarcoma (STS) in children. Despite intensive therapy, relatively few children with metastatic and unresectable disease survive beyond three years. RAS pathway activation is common in MPNST, suggesting MEK pathway inhibition as a targeted therapy, but the impact on clinical outcome has been small to date. PROCEDURE: We conducted preclinical pharmacokinetic (PK) and pharmacodynamic studies of two MEK inhibitors, trametinib and selumetinib, in two MPNST models and analyzed tumors for intratumor drug levels. We then investigated 3'-deoxy-3'-[18 F]fluorothymidine (18 F-FLT) PET imaging followed by 18 F-FDG PET/CT imaging of MPNST xenografts coupled to short-term or longer-term treatment with selumetinib focusing on PET-based imaging as a biomarker of MEK inhibition. RESULTS: Trametinib decreased pERK expression in MPNST xenografts but did not prolong survival or decrease Ki67 expression. In contrast, selumetinib prolonged survival of animals bearing MPNST xenografts, and this correlated with decreased pERK and Ki67 staining. PK studies revealed a significantly higher fraction of unbound selumetinib within a responsive MPNST xenograft model. Thymidine uptake, assessed by 18 F-FLT PET/CT, positively correlated with Ki67 expression in different xenograft models and in response to selumetinib. CONCLUSION: The ability of MEK inhibitors to control MPNST growth cannot simply be predicted by serum drug levels or drug-induced changes in pERK expression. Tumor cell proliferation assessed by 18 F-FLT PET imaging might be useful as an early response marker to targeted therapies, including MEK inhibition, where a primary effect is cell-cycle arrest.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neurofibrosarcoma/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Proteínas ras/antagonistas & inhibidores , Animales , Apoptosis , Bencimidazoles/administración & dosificación , Proliferación Celular , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neurofibrosarcoma/diagnóstico por imagen , Neurofibrosarcoma/tratamiento farmacológico , Neurofibrosarcoma/metabolismo , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Radiofármacos/farmacocinética , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712425

RESUMEN

Antibody-drug conjugates (ADCs) have emerged as a revolutionary therapeutic class, combining the precise targeting ability of monoclonal antibodies with the potent cytotoxic effects of chemotherapeutics. Notably, ADCs have rapidly advanced in the field of breast cancer treatment. This innovative approach holds promise for strengthening the immune system through antibody-mediated cellular toxicity, tumor-specific immunity, and adaptive immune responses. However, the development of upfront and acquired resistance poses substantial challenges in maximizing the effectiveness of these therapeutics, necessitating a deeper understanding of the underlying mechanisms. These mechanisms of resistance include antigen loss, derangements in ADC internalization and recycling, drug clearance, and alterations in signaling pathways and the payload target. To overcome resistance, ongoing research and development efforts are focused on urgently identifying biomarkers, integrating immune therapy approaches, and designing novel cytotoxic payloads. This Review provides an overview of the mechanisms and clinical effectiveness of ADCs, and explores their unique immune-boosting function, while also highlighting the complex resistance mechanisms and safety challenges that must be addressed. A continued focus on how ADCs impact the tumor microenvironment will help to identify new payloads that can improve patient outcomes.


Asunto(s)
Neoplasias de la Mama , Inmunoconjugados , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Anticuerpos Monoclonales , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunidad , Microambiente Tumoral
3.
Artículo en Inglés | MEDLINE | ID: mdl-35933111

RESUMEN

Rhabdomyosarcoma (RMS) is a childhood sarcoma composed of myoblast-like cells, which suggests a defect in terminal skeletal muscle differentiation. To explore potential defects in the differentiation program, we searched for mRNA splicing variants in genes encoding transcription factors driving skeletal muscle lineage commitment and differentiation. We studied two RMS cases and identified altered splicing resulting in "skipping" the second of three exons in MYOD1. RNA-Seq data from 42 tumors and additional RMS cell lines revealed exon 2 skipping in both MYOD1 and MYF5 but not in MYF6 or MYOG. Complementary molecular analysis of MYOD1 mRNA found evidence for exon skipping in 5 additional RMS cases. Functional studies showed that so-called MYODΔEx2 protein failed to robustly induce muscle-specific genes, and its ectopic expression conferred a selective advantage in cultured fibroblasts and an RMS xenograft. In summary, we present previously unrecognized exon skipping within MYOD1 and MYF5 in RMS, and we propose that alternative splicing can represent a mechanism to alter the function of these two transcription factors in RMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA