Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3265-3268, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085857

RESUMEN

The magnitude of inspiratory effort relief within the first 2 hours of non-invasive ventilation for hypoxic respiratory failure was shown in a recent exploratory clinical study to be an early and accurate predictor of outcome at 24 hours. We simulated the application of non-invasive ventilation to three patients whose physiological and clinical characteristics match the data in that study. Reductions in inspiratory effort corresponding to reductions of esophageal pressure swing greater than 10 cmH2O more than halved the values of total lung stress, driving pressure, power and transpulmonary pressure swing. In the absence of significant reductions in inspiratory pressure, multiple indicators of lung injury increased after application of non-invasive ventilation. Clinical Relevance- We show using computer simulation that reduced inspiratory pressure after application of noninvasive ventilation translates directly into large reductions in multiple well-established indicators of lung injury, providing a potential physiological explanation for recent clinical findings.


Asunto(s)
Lesión Pulmonar , Ventilación no Invasiva , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Simulación por Computador , Humanos , Hipoxia/terapia , Síndrome de Dificultad Respiratoria/terapia , Insuficiencia Respiratoria/terapia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3261-3264, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36083938

RESUMEN

We present new results validating the capability of a high-fidelity computational simulator to accurately predict the responses of individual patients with acute respiratory distress syndrome to changes in mechanical ventilator settings. 26 pairs of data-points comprising arterial blood gasses collected before and after changes in inspiratory pressure, PEEP, FiO2, and I:E ratio from six mechanically ventilated patients were used for this study. Parallelized global optimization algorithms running on a high-performance computing cluster were used to match the simulator to each initial data point. Mean absolute percentage errors between the simulator predicted values of PaO2 and PaCO2 and the patient data after changing ventilator parameters were 10.3% and 12.6%, respectively. Decreasing the complexity of the simulator by reducing the number of independent alveolar compartments reduced the accuracy of its predictions. Clinical Relevance- These results provide further evidence that our computational simulator can accurately reproduce patient responses to mechanical ventilation, highlighting its usefulness as a clinical research tool.


Asunto(s)
Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria , Análisis de los Gases de la Sangre , Humanos , Respiración con Presión Positiva/métodos , Respiración Artificial/métodos , Ventiladores Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA