Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Cancer ; 16(1): 851, 2016 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-27816051

RESUMEN

BACKGROUND: NH exchangers (NHEs) play a crucial role in regulating intra/extracellular pH, which is altered in cancer cells, and are therefore suitable targets to alter cancer cell metabolism in order to inhibit cell survival and proliferation. Among NHE inhibitors, amiloride family members are commonly used in clinical practice as diuretics; we focused on the amiloride HMA, reporting a net cytotoxic effect on a panel of human cancer cell lines; now we aim to provide new insights into the molecular events leading to cell death by HMA. METHODS: Colon cancer cell lines were treated with HMA and analysed with: morphological and cellular assays for cell viability and death, and autophagy; biochemical approaches to evaluate mitochondrial function and ROS production; in situ detection of DNA damage; molecular tools to silence crucial autophagy/necroptosis factors. RESULTS: HMA affects cellular morphology, alters mitochondrial structure and function, causes an increase in ROS, which is detrimental to DNA integrity, stimulates poly(ADP-ribose) synthesis, activates RIPK3-dependent death and triggers autophagy, which is unable to rescue cell survival. These features are hot points of an intricate network of processes, including necroptosis and autophagy, regulating the homeostasis between survival and death. CONCLUSION: Our results allow the identification of multiple events leading to cell death in cancer cells treated with HMA. The here-defined intricate network activated by HMA could be instrumental to selectively target the key players of each pathway in the attempt to improve the global response to HMA. Our data could be the starting point for developing a newly designed targeted therapy.


Asunto(s)
Amilorida/análogos & derivados , Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Amilorida/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli Adenosina Difosfato Ribosa/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
2.
Nucleic Acids Res ; 42(13): 8433-48, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24939902

RESUMEN

The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Reparación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Proteína de Unión a CREB/química , Células Cultivadas , Cromatina/metabolismo , ADN/biosíntesis , Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Mutación , Antígeno Nuclear de Célula en Proliferación/genética
3.
Carcinogenesis ; 36 Suppl 1: S19-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106138

RESUMEN

Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos/administración & dosificación , Senescencia Celular/efectos de los fármacos , Sustancias Peligrosas/efectos adversos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Humanos
4.
Carcinogenesis ; 36 Suppl 1: S203-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106140

RESUMEN

Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/metabolismo , Animales , Humanos , Neoplasias/etiología
5.
Carcinogenesis ; 36 Suppl 1: S232-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106141

RESUMEN

An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Inflamación/inducido químicamente , Inflamación/inmunología , Neoplasias/inducido químicamente , Neoplasias/inmunología , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Neoplasias/etiología , Riesgo
6.
Carcinogenesis ; 36 Suppl 1: S111-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26002081

RESUMEN

An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-ß, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression.


Asunto(s)
Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/inmunología , Evasión Inmune/efectos de los fármacos , Vigilancia Inmunológica/efectos de los fármacos , Neoplasias/inducido químicamente , Neoplasias/inmunología , Animales , Ambiente , Humanos , Evasión Inmune/inmunología , Vigilancia Inmunológica/inmunología , Neoplasias/etiología
7.
Carcinogenesis ; 36 Suppl 1: S160-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106136

RESUMEN

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Microambiente Tumoral/efectos de los fármacos , Animales , Carcinogénesis/inducido químicamente , Humanos , Neoplasias/inducido químicamente
8.
Carcinogenesis ; 36 Suppl 1: S2-18, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106139

RESUMEN

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Animales , Humanos , Transducción de Señal/efectos de los fármacos
9.
Carcinogenesis ; 36 Suppl 1: S184-202, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106137

RESUMEN

One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Neovascularización Patológica/inducido químicamente , Animales , Humanos
10.
Carcinogenesis ; 36 Suppl 1: S128-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106135

RESUMEN

The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Animales , Progresión de la Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos
11.
Carcinogenesis ; 36 Suppl 1: S38-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106143

RESUMEN

The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Proliferación Celular/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Transducción de Señal/efectos de los fármacos , Animales , Humanos
12.
Carcinogenesis ; 36 Suppl 1: S61-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106144

RESUMEN

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Inestabilidad Genómica/efectos de los fármacos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Animales , Humanos
13.
Carcinogenesis ; 36 Suppl 1: S89-110, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26106145

RESUMEN

Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.


Asunto(s)
Carcinogénesis/inducido químicamente , Carcinógenos Ambientales/efectos adversos , Muerte Celular/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Neoplasias/inducido químicamente , Neoplasias/etiología , Animales , Homeostasis/efectos de los fármacos , Humanos
14.
Apoptosis ; 16(4): 321-33, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21404107

RESUMEN

Drug resistance of cancer cells is often correlated with apoptosis evasion; however, an active involvement of autophagy in this scenario has been recently proposed, based on the evidence that autophagy could exert a protective role toward the activation of apoptosis in cancer cells. In this review, we briefly review the basic features of apoptosis, and we describe in details the molecular patterns of autophagy, with a special emphasis on its still controversial physiological function(s). The crucial factors governing the cross talk between autophagy and apoptosis will be illustrated.


Asunto(s)
Apoptosis , Autofagia , Animales , Metabolismo Energético , Humanos , Modelos Biológicos , Neoplasias/patología
15.
Subcell Biochem ; 50: 307-23, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20012589

RESUMEN

Apoptosis, the best known form of programmed cell death, is tightly regulated by a number of sensors, signal transducers and effectors. Apoptosis is mainly active during embryonic development, when deletion of redundant cellular material is required for the correct morphogenesis of tissues and organs; moreover, it is essential for the maintenance of tissue homeostasis during cell life. Cells also activate apoptosis when they suffer from various insults, such as damage to DNA or to other cellular components, or impairment of basic processes, such as DNA replication and DNA repair. Removal of damaged cells is fundamental in maintaining the health of organisms. In addition, apoptosis induction following DNA damage is exploited to kill cancer cells. In this chapter we will review the main features of developmental and induced apoptosis.


Asunto(s)
Apoptosis , Reparación del ADN , Replicación del ADN , Desarrollo Embrionario , Humanos
16.
FASEB J ; 23(1): 45-57, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18796561

RESUMEN

Buthionine sulfoximine (BSO) is a well-known inhibitor of glutathione synthesis, producing slow glutathione (GSH) depletion and oxidative stress; some "responder" cells avoid BSO-induced death by trans-activating the prosurvival protein Bcl-2. Here we show that BSO activates a noncanonical, inhibitory NF-kappaB- and p65-independent NF-kappaB pathway via a multistep process leading to the up-regulation of Bcl-2. The slow BSO-induced GSH depletion allows separation of two redox-related phases, namely, early thiol disequilibrium and late frank oxidative stress; each phase contributes to the progressive activation of a p50-p50 homodimer. The early phase, coinciding with substantial thiol depletion, produces a cytosolic preparative complex, consisting of p50 and its interactor Bcl-3 linked by interprotein disulfide bridges. The late phase, coinciding with reactive oxygen species production, is responsible, probably via p38 activation, for nuclear targeting of the complex and trans-activation of Bcl-2.


Asunto(s)
Subunidad p50 de NF-kappa B/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Proteínas del Linfoma 3 de Células B , Butionina Sulfoximina , Regulación de la Expresión Génica/fisiología , Glutatión/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Células U937 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Mutat Res ; 704(1-3): 12-20, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20096807

RESUMEN

Among cell cycle regulatory proteins that are activated following DNA damage, the cyclin-dependent kinase inhibitor p21(CDKN1A) plays essential roles in the DNA damage response, by inducing cell cycle arrest, direct inhibition of DNA replication, as well as by regulating fundamental processes, like apoptosis and transcription. These functions are performed through the ability of p21 to interact with a number of proteins involved in these processes. Despite an initial controversy, during the last years several lines of evidence have also indicated that p21 may be directly involved in DNA repair. In particular, the participation of p21 in nucleotide excision repair (NER), base excision repair (BER), and DNA translesion synthesis (TLS), has been suggested to occur thanks to its interaction with proliferating cell nuclear antigen (PCNA), a crucial protein involved in several aspects of DNA metabolism, and cell-cycle regulation. In this review, the multiple roles of p21 in the DNA damage response, including regulation of cell cycle, apoptosis and gene transcription, are discussed together with the most recent findings supporting the direct participation of p21 protein in DNA repair processes. In particular, spatio-temporal dynamics of p21 recruitment to sites of DNA damage will be considered together with several lines of evidence indicating a regulatory role for p21. In addition, the relevance of post-translational regulation in the fate (e.g. degradation) of p21 protein after cell exposure to DNA damaging agents will be analyzed. Both sets of evidence will be discussed in terms of the overall DNA damage response.


Asunto(s)
Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Reparación del ADN , Apoptosis , Daño del ADN , Regulación de la Expresión Génica , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Tiempo
18.
Nucleic Acids Res ; 36(5): 1713-22, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18263614

RESUMEN

The cell-cycle inhibitor p21(CDKN1A) has been suggested to directly participate in DNA repair, thanks to the interaction with PCNA. Yet, its role has remained unclear. Among proteins interacting with both p21 and PCNA, the histone acetyltransferase (HAT) p300 has been shown to participate in DNA repair. Here we report evidence indicating that p21 protein localizes and interacts with both p300 and PCNA at UV-induced DNA damage sites. The interaction between p300 and PCNA is regulated in vivo by p21. Indeed, loss of p21, or its inability to bind PCNA, results in a prolonged binding to chromatin and an increased association of p300 with PCNA, in UV-irradiated cells. Concomitantly, HAT activity of p300 is reduced after DNA damage. In vitro experiments show that inhibition of p300 HAT activity induced by PCNA is relieved by p21, which disrupts the association between recombinant p300 and PCNA. These results indicate that p21 is required during DNA repair to regulate p300 HAT activity by disrupting its interaction with PCNA.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Reparación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/análisis , Daño del ADN , Humanos , Factores de Transcripción p300-CBP/análisis
19.
Int J Oncol ; 33(3): 613-21, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18695893

RESUMEN

In mammalian cells, the H2AX histone is rapidly phosphorylated upon the induction of DNA double strand breaks and promotes their repair, which is required for preserving genomic integrity. Etoposide is an inhibitor of DNA topoisomerase II, which causes DNA breaks and induces H2AX phosphorylation. To elucidate whether H2AX may affect cellular sensitivity to etoposide, we studied the response to this agent in immortalized embryonic fibroblasts derived from H2AX knockout mice. Clonogenic assays in cells treated with the drug revealed a greater sensitivity of H2AX null cells compared to wild-type cells, possibly due to the persistence of a higher number of DNA breaks, as detected with the comet assay. In both cell lines, etoposide induced micronuclei formation and nuclear fragmentation; however, in H2AX deficient cells nuclear fragmentation was observed at a lower drug concentration. Flow cytometric analysis showed that etoposide induced a G2/M cell cycle arrest in both cell lines, which occurred at lower drug concentrations in H2AX deficient cells. G2/M arrest was paralleled by an accumulation of cyclin A and cyclin B1, suggesting that treated cells are not able to complete cell cycle correctly and undergo cell death. Taken together, our observations suggest that H2AX takes part to the cellular response to etoposide and confirm its role in the maintenance of genome stability.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos/fisiología , Etopósido/farmacología , Fibroblastos/efectos de los fármacos , Histonas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Ciclo Celular , Ensayo Cometa , Ciclina A/biosíntesis , Ciclina A/efectos de los fármacos , Ciclina B/biosíntesis , Ciclina B/efectos de los fármacos , Citometría de Flujo , Histonas/genética , Ratones , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/biosíntesis , Poli(ADP-Ribosa) Polimerasas/efectos de los fármacos , Inhibidores de Topoisomerasa II
20.
Ann N Y Acad Sci ; 1095: 175-81, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17404030

RESUMEN

The proto-oncogene c-myc is involved in multiple cell pathways with opposite effects on cell outcome of death or proliferation. It has been proposed that these different roles depend on the sequestration of c-Myc protein in cellular compartments and/or its phosphorylation. We speculated that subcellular localization of c-Myc protein and of its phosphorylated form (P-c-Myc) could have a role in the different response to paclitaxel (PTX) in two prostate carcinoma cell lines, PC3 and DU145, which undergo either multinucleation or c-myc-dependent apoptosis, respectively. c-myc is amplified only in PC3, but a similar extent of c-Myc phosphorylation was observed in both cell lines after PTX treatment. We found that PTX-induced upregulation of c-myc in DU145 cells, not occurring in PC3 cells, cannot be ascribed to a different protein localization, and that a comparable c-Myc and P-c-Myc nuclear translocation occurs in both cell lines after drug treatment. Thus, subcellular localization of c-Myc and P-c-Myc is not crucial in determining the mode of cell death in these prostate carcinoma cell lines.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma/tratamiento farmacológico , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Paclitaxel/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Carcinoma/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Proto-Oncogenes Mas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA