Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 810: 152207, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890660

RESUMEN

Efforts on socio-hydrology science have been promoted to solve challenges faced by contemporary water management. This study aims to better understand the co-evolution of human-water systems in floodplains. Specifically, farmers' opinions on flooding, dike effects, and living conditions in different dike systems in the Vietnamese Mekong Delta floodplain are compared to explore possible connections between human perceptions and dike development processes by employing in-depth interviews of 7 officials and oral surveys of 100 farmers supported by a literature review. Local specific contexts have resulted in various dike systems. One mixed-low-dike-dominant, two mixed-high-dike-dominant, and one only-high-dike zones are found in the research area. High dikes have been operating in an ad hoc response to short-term demands in the mixed-dike zones while strictly following a provincial schedule in the only-high-dike zone. The Fisher-Freeman-Halton test was used to compare the farmers' opinions on diverse questions between the zones. Dike development processes are suggested to influence livelihood, transportation, perceived flood peak changes and perceived causes for declining fish stocks. Although it remains challenging to directly attribute these differences to the dike development processes themselves, a new interrelated dike-flood-livelihood feedback loop is proposed for floodplains. Insights obtained are expected to support decision makers formulating tailored climate change adaptation policies to the different socio-hydrological zones. Our findings also contribute to the current understanding of international scientific communities on the human-water system and provide materials to further develop socio-hydrological models that strengthen our predictive capability on how the complex system evolves in floodplains.


Asunto(s)
Inundaciones , Hidrología , Pueblo Asiatico , Cambio Climático , Agricultores , Humanos
2.
Nature ; 438(7069): 846-9, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-16341012

RESUMEN

Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than approximately 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of approximately 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation may considerably affect their distribution and dynamics.


Asunto(s)
Ecosistema , Lluvia , Árboles/fisiología , África , Animales , Biomasa , Clima Desértico , Poaceae/fisiología , Suelo/análisis , Madera
3.
Am Nat ; 171(6): 851-6, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18462133

RESUMEN

Savanna ecosystems have long been fertile ground for mathematical modeling of vegetation structure and the role of resources and disturbance in tree-grass coexistence. In recent years, several authors have presented models that explore how savanna fires suppress the woody community, alter ecosystem dynamics, and promote grass persistence. We argue, however, that the assumption that fires influence savanna dynamics by consuming woody biomass may be wrong because, in reality, fires kill seedlings and saplings that constitute little biomass relative to adult trees. We present a simple alternative that separates the woody community into a subadult (fire-sensitive) class and an adult (fire-resistant) class and explore how this ecologically more realistic, but still simplified, model may provide better simulations of demographic processes and response to fires in savannas.


Asunto(s)
Ecosistema , Modelos Biológicos , Biomasa , Incendios , Meristema , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA