Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(4): e1009484, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886537

RESUMEN

Primary cilia are microtubule-based organelles present on most cells that regulate many physiological processes, ranging from maintaining energy homeostasis to renal function. However, the role of these structures in the regulation of behavior remains unknown. To study the role of cilia in behavior, we employ mouse models of the human ciliopathy, Bardet-Biedl Syndrome (BBS). Here, we demonstrate that BBS mice have significant impairments in context fear conditioning, a form of associative learning. Moreover, we show that postnatal deletion of BBS gene function, as well as congenital deletion, specifically in the forebrain, impairs context fear conditioning. Analyses indicated that these behavioral impairments are not the result of impaired hippocampal long-term potentiation. However, our results indicate that these behavioral impairments are the result of impaired hippocampal neurogenesis. Two-week treatment with lithium chloride partially restores the proliferation of hippocampal neurons which leads to a rescue of context fear conditioning. Overall, our results identify a novel role of cilia genes in hippocampal neurogenesis and long-term context fear conditioning.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Miedo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Animales , Síndrome de Bardet-Biedl/tratamiento farmacológico , Síndrome de Bardet-Biedl/patología , Proliferación Celular/efectos de los fármacos , Cilios/genética , Cilios/metabolismo , Cilios/patología , Modelos Animales de Enfermedad , Miedo/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Litio/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Neurogénesis/genética , Neuronas/patología
2.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397073

RESUMEN

Cancer cells frequently present elevated intracellular iron levels, which are thought to facilitate an enhanced proliferative capacity. Targeting iron metabolism within cancer cells presents an avenue to enhance therapeutic responses, necessitating the use of non-invasive models to modulate iron manipulation to predict responses. Moreover, the ubiquitous nature of iron necessitates the development of unique, non-invasive markers of metabolic disruptions to develop more personalized approaches and enhance the clinical utility of these approaches. Ferritin, an iron storage enzyme that is often upregulated as a response to iron accumulation, plays a central role in iron metabolism and has been frequently associated with unfavorable clinical outcomes in cancer. Herein, we demonstrate the successful utility, validation, and functionality of a doxycycline-inducible ferritin heavy chain (FtH) overexpression model in H1299T non-small-cell lung cancer (NSCLC) cells. Treatment with doxycycline increased the protein expression of FtH with a corresponding decrease in labile iron in vitro and in vivo, as determined by calcein-AM staining and EPR, respectively. Moreover, a subsequent increase in TfR expression was observed. Furthermore, T2* MR mapping effectively detected FtH expression in our in vivo model. These results demonstrate that T2* relaxation times can be used to monitor changes in FtH expression in tumors with bidirectional correlations depending on the model system. Overall, this study describes the development of an FtH overexpression NSCLC model and its correlation with T2* mapping for potential use in patients to interrogate iron metabolic alterations and predict clinical outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ferritinas/genética , Ferritinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/genética , Doxiciclina/farmacología , Neoplasias Pulmonares/diagnóstico por imagen , Hierro/metabolismo , Apoferritinas/genética , Apoferritinas/metabolismo , Imagen por Resonancia Magnética/métodos
3.
Gene Ther ; 29(5): 227-235, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33664503

RESUMEN

Bardet-Biedl syndrome (BBS) is a rare ciliopathy for which there are no current effective treatments. BBS is a genetically heterogeneous disease, though the M390R mutation in BBS1 is involved in ~25% of all genetic diagnoses of BBS. The principle features of BBS include retinal degeneration, obesity, male infertility, polydactyly, intellectual disability, and renal abnormalities. Patients with mutations in BBS genes often present with night blindness within the first decade of life, which progresses to complete blindness. This is due to progressive loss of photoreceptor cells. Male infertility is caused by a lack of spermatozoa flagella, rendering them immobile. In this study, we have crossed the wild-type human BBS1 gene, driven by the CAG promoter, onto the Bbs1M390R/M390R mouse model to determine if ectopic expression of BBS1 rescues male infertility and retinal degeneration. qRT-PCR indicates that the BBS1 transgene is expressed in multiple tissues throughout the mouse, with the highest expression seen in the testes, and much lower expression in the eye and hypothalamus. Immunohistochemistry of the transgene in the eye showed little if any expression in the photoreceptor outer nuclear layer. When male Bbs1M30R/M390R;BBS1TG+ mice are housed with WT females, they are able to sire offspring, indicating that the male infertility phenotype of BBS is rescued by the transgene. Using electroretinography (ERGs) to measure retinal function and optical coherence tomography to measure retinal thickness, we show that the transgene does not confer protection against retinal degeneration in Bbs1M300R/M390R;BBS1TG+ mice. The results of this study indicate that the male infertility aspect of BBS is an attractive target for gene therapy.


Asunto(s)
Síndrome de Bardet-Biedl , Infertilidad Masculina , Degeneración Retiniana , Animales , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Modelos Animales de Enfermedad , Expresión Génica Ectópica , Femenino , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/terapia , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Degeneración Retiniana/genética , Degeneración Retiniana/terapia
4.
Proc Natl Acad Sci U S A ; 116(4): 1353-1360, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30622176

RESUMEN

Retinitis pigmentosa (RP) is an inherited retinal degenerative disease with severe vision impairment leading to blindness. About 10-15% of RP cases are caused by mutations in the RPGR gene, with RPGR mutations accounting for 70% of X-linked RP cases. The mechanism by which RPGR mutations cause photoreceptor cell dysfunction is not well understood. In this study, we show that the two isoforms of RPGR (RPGR1-19 and RPGRORF15) interact with endogenous PDE6D, INPP5E, and RPGRIP1L. The RPGR1-19 isoform contains two PDE6D binding sites with the C-terminal prenylation site being the predominant PDE6D binding site. The C terminus of RPGR1-19 that contains the prenylation site regulates its interaction with PDE6D, INPP5E, and RPGRIP1L. Only the RPGR1-19 isoform localizes to cilia in cultured RPE1 cells. Missense variations found in RPGR patients disrupt the interaction between RPGR isoforms and their endogenous interactors INPP5E, PDE6D, and RPGRIP1L. We evaluated a RPGR missense variation (M58K) found in a family with X-linked retinitis pigmentosa (XLRP) and show that this missense variation disrupts the interaction of RPGR isoforms with their endogenous interactors. The M58K variation also disrupts the ciliary localization of the RPGR1-19 isoform. Using this assay, we also show that some of the RPGR missense variants reported in the literature might not actually be disease causing. Our data establishes an in vitro assay that can be used to validate the potential pathogenicity of RPGR missense variants.


Asunto(s)
Proteínas del Ojo/genética , Mutación Missense/genética , Proteínas Nucleares/genética , Dominios y Motivos de Interacción de Proteínas/genética , Retinitis Pigmentosa/genética , Animales , Sitios de Unión/genética , Línea Celular , Cilios/genética , Células HEK293 , Humanos , Ratones , Isoformas de Proteínas/genética
5.
J Med Genet ; 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503832

RESUMEN

BACKGROUND: Oligoteratoasthenozoospermia (OTA) combines deteriorated quantity, morphology and motility of the sperm, resulting in male factor infertility. METHODS: We used whole genome genotyping and exome sequencing to identify the mutation causing OTA in four men in a consanguineous Bedouin family. We expressed the normal and mutated proteins tagged with c-Myc at the carboxy termini by transfection with pCDNA3.1 plasmid constructs to evaluate the effects on protein stability in HEK293 cells and on the kinetics of actin repolymerisation in retinal pigment epithelium cells. Patients' sperm samples were visualised by transmission electron microscopy to determine axoneme structures and were stained with fluorescent phalloidin to visualise the fibrillar (F)-actin. RESULTS: A homozygous missense mutation in Ciliogenesis Associated TTC17 Interacting Protein (CATIP): c. T103A, p. Phe35Ile, a gene encoding a protein important in actin organisation and ciliogenesis, was identified as the causative mutation with a LOD score of 3.25. The mutation reduces the protein stability compared with the normal protein. Furthermore, overexpression of the normal protein, but not the mutated protein, inhibits repolymerisation of actin after disruption with cytochalasin D. A high percentage of spermatozoa axonemes from patients have abnormalities, as well as disturbances in the distribution of F-actin. CONCLUSION: This is the first report of a recessive mutation in CATIP in humans. The identified mutation may contribute to asthenozoospermia by its involvement in actin polymerisation and on the actin cytoskeleton. A mouse knockout homozygote for CATIP was reported to demonstrate male infertility as the sole phenotype.

6.
Proc Natl Acad Sci U S A ; 114(42): 11199-11204, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973933

RESUMEN

Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in ∼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9-mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas del Citoesqueleto/genética , Proteínas del Ojo/genética , Edición Génica , Terapia Genética/métodos , Glaucoma de Ángulo Abierto/terapia , Glicoproteínas/genética , Animales , Línea Celular , Glaucoma de Ángulo Abierto/genética , Humanos , Técnicas In Vitro , Ratones
7.
PLoS Genet ; 13(10): e1007057, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29049287

RESUMEN

Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degeneration in BBS, we developed a congenital knockout mouse of Bbs8, as well as conditional mouse models in which function of the BBSome (a protein complex that mediates ciliary trafficking) can be temporally inactivated or restored. We demonstrate that BBS mutant mice have defects in retinal outer segment morphogenesis. We further demonstrate that removal of Bbs8 in adult mice affects photoreceptor function and disrupts the structural integrity of the outer segment. Notably, using a mouse model in which a gene trap inhibiting Bbs8 gene expression can be removed by an inducible FLP recombinase, we show that when BBS8 is restored in immature retinas with malformed outer segments, outer segment extension can resume normally and malformed outer segment discs are displaced distally by normal outer segment structures. Over time, the retinas of the rescued mice become morphologically and functionally normal, indicating that there is a window of plasticity when initial retinal outer segment morphogenesis defects can be ameliorated.


Asunto(s)
Morfogénesis/fisiología , Células Fotorreceptoras/metabolismo , Transporte de Proteínas/fisiología , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patología , Cilios/metabolismo , Ratones , Ratones Noqueados , Modelos Animales , Morfogénesis/genética , Mutación/genética , Transporte de Proteínas/genética , Retina/metabolismo , Retina/fisiología
8.
PLoS Genet ; 13(7): e1006936, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28753627

RESUMEN

Mutations in BBS6 cause two clinically distinct syndromes, Bardet-Biedl syndrome (BBS), a syndrome caused by defects in cilia transport and function, as well as McKusick-Kaufman syndrome, a genetic disorder characterized by congenital heart defects. Congenital heart defects are rare in BBS, and McKusick-Kaufman syndrome patients do not develop retinitis pigmentosa. Therefore, the McKusick-Kaufman syndrome allele may highlight cellular functions of BBS6 distinct from the presently understood functions in the cilia. In support, we find that the McKusick-Kaufman syndrome disease-associated allele, BBS6H84Y; A242S, maintains cilia function. We demonstrate that BBS6 is actively transported between the cytoplasm and nucleus, and that BBS6H84Y; A242S, is defective in this transport. We developed a transgenic zebrafish with inducible bbs6 to identify novel binding partners of BBS6, and we find interaction with the SWI/SNF chromatin remodeling protein Smarcc1a (SMARCC1 in humans). We demonstrate that through this interaction, BBS6 modulates the sub-cellular localization of SMARCC1 and find, by transcriptional profiling, similar transcriptional changes following smarcc1a and bbs6 manipulation. Our work identifies a new function for BBS6 in nuclear-cytoplasmic transport, and provides insight into the disease mechanism underlying the congenital heart defects in McKusick-Kaufman syndrome patients.


Asunto(s)
Anomalías Múltiples/genética , Síndrome de Bardet-Biedl/genética , Chaperoninas del Grupo II/genética , Cardiopatías Congénitas/genética , Hidrocolpos/genética , Polidactilia/genética , Factores de Transcripción/genética , Enfermedades Uterinas/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Transporte Activo de Núcleo Celular/genética , Animales , Animales Modificados Genéticamente/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patología , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Cilios/metabolismo , Cilios/patología , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Humanos , Hidrocolpos/metabolismo , Hidrocolpos/patología , Ratones , Mutación , Polidactilia/metabolismo , Polidactilia/patología , Transporte de Proteínas/genética , Factores de Transcripción/biosíntesis , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología , Pez Cebra/genética
9.
J Biol Chem ; 293(25): 9854-9868, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29743238

RESUMEN

Elevation of intraocular pressure (IOP) is a serious adverse effect of glucocorticoid (GC) therapy. Increased extracellular matrix (ECM) accumulation and endoplasmic reticulum (ER) stress in the trabecular meshwork (TM) is associated with GC-induced IOP elevation. However, the molecular mechanisms by which GCs induce ECM accumulation and ER stress in the TM have not been determined. Here, we show that a potent GC, dexamethasone (Dex), activates transforming growth factor ß (TGFß) signaling, leading to GC-induced ECM accumulation, ER stress, and IOP elevation. Dex increased both the precursor and bioactive forms of TGFß2 in conditioned medium and activated TGFß-induced SMAD signaling in primary human TM cells. Dex also activated TGFß2 in the aqueous humor and TM of a mouse model of Dex-induced ocular hypertension. We further show that Smad3-/- mice are protected from Dex-induced ocular hypertension, ER stress, and ECM accumulation. Moreover, treating WT mice with a selective TGFß receptor kinase I inhibitor, LY364947, significantly decreased Dex-induced ocular hypertension. Of note, knockdown of the ER stress-induced activating transcription factor 4 (ATF4), or C/EBP homologous protein (CHOP), completely prevented Dex-induced TGFß2 activation and ECM accumulation in TM cells. These observations suggested that chronic ER stress promotes Dex-induced ocular hypertension via TGFß signaling. Our results indicate that TGFß2 signaling plays a central role in GC-induced ocular hypertension and provides therapeutic targets for GC-induced ocular hypertension.


Asunto(s)
Dexametasona/toxicidad , Glucocorticoides/toxicidad , Hipertensión Ocular/patología , Proteína smad3/fisiología , Malla Trabecular/patología , Factor de Crecimiento Transformador beta2/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hipertensión Ocular/inducido químicamente , Hipertensión Ocular/metabolismo , Malla Trabecular/efectos de los fármacos , Factor de Crecimiento Transformador beta2/genética
10.
PLoS Genet ; 10(2): e1004083, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550735

RESUMEN

Bardet-Biedl syndrome (BBS) is a well-known ciliopathy with mutations reported in 18 different genes. Most of the protein products of the BBS genes localize at or near the primary cilium and the centrosome. Near the centrosome, BBS proteins interact with centriolar satellite proteins, and the BBSome (a complex of seven BBS proteins) is believed to play a role in transporting ciliary membrane proteins. However, the precise mechanism by which BBSome ciliary trafficking activity is regulated is not fully understood. Here, we show that a centriolar satellite protein, AZI1 (also known as CEP131), interacts with the BBSome and regulates BBSome ciliary trafficking activity. Furthermore, we show that AZI1 interacts with the BBSome through BBS4. AZI1 is not involved in BBSome assembly, but accumulation of the BBSome in cilia is enhanced upon AZI1 depletion. Under conditions in which the BBSome does not normally enter cilia, such as in BBS3 or BBS5 depleted cells, knock down of AZI1 with siRNA restores BBSome trafficking to cilia. Finally, we show that azi1 knockdown in zebrafish embryos results in typical BBS phenotypes including Kupffer's vesicle abnormalities and melanosome transport delay. These findings associate AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a novel BBS candidate gene.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Centriolos/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Factores de Ribosilacion-ADP/genética , Animales , Síndrome de Bardet-Biedl/patología , Proteínas de Ciclo Celular/genética , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/genética , Proteínas del Citoesqueleto , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de Microtúbulos/genética , Mutación , Transporte de Proteínas/genética , Proteínas/genética , ARN Interferente Pequeño , Pez Cebra/crecimiento & desarrollo
13.
Hum Mol Genet ; 23(1): 40-51, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23943788

RESUMEN

Ciliopathies are a group of heterogeneous disorders associated with ciliary dysfunction. Diseases in this group display considerable phenotypic variation within individual syndromes and overlapping phenotypes among clinically distinct disorders. Particularly, mutations in CEP290 cause phenotypically diverse ciliopathies ranging from isolated retinal degeneration, nephronophthisis and Joubert syndrome, to the neonatal lethal Meckel-Gruber syndrome. However, the underlying mechanisms of the variable expressivity in ciliopathies are not well understood. Here, we show that components of the BBSome, a protein complex composed of seven Bardet-Biedl syndrome (BBS) proteins, physically and genetically interact with CEP290 and modulate the expression of disease phenotypes caused by CEP290 mutations. The BBSome binds to the N-terminal region of CEP290 through BBS4 and co-localizes with CEP290 to the transition zone (TZ) of primary cilia and centriolar satellites in ciliated cells, as well as to the connecting cilium in photoreceptor cells. Although CEP290 still localizes to the TZ and connecting cilium in BBSome-depleted cells, its localization to centriolar satellites is disrupted and CEP290 appears to disperse throughout the cytoplasm in BBSome-depleted cells. Genetic interactions were tested using Cep290(rd16)- and Bbs4-null mutant mouse lines. Additional loss of Bbs4 alleles in Cep290(rd16/rd16) mice results in increased body weight and accelerated photoreceptor degeneration compared with mice without Bbs4 mutations. Furthermore, double-heterozygous mice (Cep290(+/rd16);Bbs4(+/-)) have increased body weight compared with single-heterozygous animals. Our data indicate that genetic interactions between BBSome components and CEP290 could underlie the variable expression and overlapping phenotypes of ciliopathies caused by CEP290 mutations.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Síndrome de Bardet-Biedl/genética , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Retina/patología , Animales , Síndrome de Bardet-Biedl/metabolismo , Sitios de Unión , Peso Corporal , Proteínas de Ciclo Celular , Línea Celular , Centriolos/metabolismo , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Células Fotorreceptoras/metabolismo , Retina/metabolismo
14.
Hum Mol Genet ; 22(25): 5229-36, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23933735

RESUMEN

Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.


Asunto(s)
Enfermedades Musculares/genética , Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas/genética , Estabilidad del ARN/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Preescolar , Consanguinidad , Exoma/genética , Ácidos Grasos/metabolismo , Femenino , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Masculino , Enfermedades Musculares/fisiopatología , Mutación , Miopatías Estructurales Congénitas/fisiopatología , Linaje , Proteínas Tirosina Fosfatasas/metabolismo
15.
J Cell Sci ; 126(Pt 11): 2372-80, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23572516

RESUMEN

Bardet-Biedl Syndrome (BBS) is a pleiotropic and genetically heterozygous disorder caused independently by numerous genes (BBS1-BBS17). Seven highly conserved BBS proteins (BBS1, 2, 4, 5, 7, 8 and 9) form a complex known as the BBSome, which functions in ciliary membrane biogenesis. BBS7 is both a unique subunit of the BBSome and displays direct physical interaction with a second BBS complex, the BBS chaperonin complex. To examine the in vivo function of BBS7, we generated Bbs7 knockout mice. Bbs7(-/-) mice show similar phenotypes to other BBS gene mutant mice including retinal degeneration, obesity, ventriculomegaly and male infertility characterized by abnormal spermatozoa flagellar axonemes. Using tissues from Bbs7(-/-) mice, we show that BBS7 is required for BBSome formation, and that BBS7 and BBS2 depend on each other for protein stability. Although the BBSome serves as a coat complex for ciliary membrane proteins, BBS7 is not required for the localization of ciliary membrane proteins polycystin-1, polycystin-2, or bitter taste receptors, but absence of BBS7 leads to abnormal accumulation of the dopamine D1 receptor to the ciliary membrane, indicating that BBS7 is involved in specific membrane protein localization to cilia.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patología , Proteínas Portadoras/genética , Membrana Celular/genética , Membrana Celular/patología , Cilios/genética , Cilios/metabolismo , Cilios/patología , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Complejos Multiproteicos/genética , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
17.
Proc Natl Acad Sci U S A ; 109(48): 19691-6, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23150559

RESUMEN

Mutations affecting ciliary components cause a series of related genetic disorders in humans, including nephronophthisis (NPHP), Joubert syndrome (JBTS), Meckel-Gruber syndrome (MKS), and Bardet-Biedl syndrome (BBS), which are collectively termed "ciliopathies." Recent protein-protein interaction studies combined with genetic analyses revealed that ciliopathy-related proteins form several functional networks/modules that build and maintain the primary cilium. However, the precise function of many ciliopathy-related proteins and the mechanisms by which these proteins are targeted to primary cilia are still not well understood. Here, we describe a protein-protein interaction network of inositol polyphosphate-5-phosphatase E (INPP5E), a prenylated protein associated with JBTS, and its ciliary targeting mechanisms. INPP5E is targeted to the primary cilium through a motif near the C terminus and prenyl-binding protein phosphodiesterase 6D (PDE6D)-dependent mechanisms. Ciliary targeting of INPP5E is facilitated by another JBTS protein, ADP-ribosylation factor-like 13B (ARL13B), but not by ARL2 or ARL3. ARL13B missense mutations that cause JBTS in humans disrupt the ARL13B-INPP5E interaction. We further demonstrate interactions of INPP5E with several ciliary and centrosomal proteins, including a recently identified ciliopathy protein centrosomal protein 164 (CEP164). These findings indicate that ARL13B, INPP5E, PDE6D, and CEP164 form a distinct functional network that is involved in JBTS and NPHP but independent of the ones previously defined by NPHP and MKS proteins.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Cuerpo Ciliar/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/fisiología , Proteínas de Microtúbulos/fisiología , Monoéster Fosfórico Hidrolasas/fisiología , Factores de Ribosilacion-ADP/genética , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Mutación Missense , Monoéster Fosfórico Hidrolasas/química , Homología de Secuencia de Aminoácido
18.
Hum Mutat ; 35(11): 1363-71, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25168514

RESUMEN

Charcot-Marie-Tooth disease type 2D (CMT2D) is an autosomal-dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl-tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl-tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss-of-function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT-associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT-associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease-causing mutation. Together, our data indicate that impaired function is a key component of GARS-mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.


Asunto(s)
Estudios de Asociación Genética , Glicina-ARNt Ligasa/genética , Glicina-ARNt Ligasa/metabolismo , Mutación , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Secuencia de Aminoácidos , Aminoacilación , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Secuencia Conservada , Análisis Mutacional de ADN , Femenino , Expresión Génica , Glicina-ARNt Ligasa/química , Humanos , Cinética , Masculino , Ratones , Neuronas/metabolismo , Linaje , Transporte de Proteínas , Levaduras/genética , Levaduras/metabolismo
19.
PLoS Genet ; 7(11): e1002358, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22072986

RESUMEN

Many signaling proteins including G protein-coupled receptors localize to primary cilia, regulating cellular processes including differentiation, proliferation, organogenesis, and tumorigenesis. Bardet-Biedl Syndrome (BBS) proteins are involved in maintaining ciliary function by mediating protein trafficking to the cilia. However, the mechanisms governing ciliary trafficking by BBS proteins are not well understood. Here, we show that a novel protein, Leucine-zipper transcription factor-like 1 (LZTFL1), interacts with a BBS protein complex known as the BBSome and regulates ciliary trafficking of this complex. We also show that all BBSome subunits and BBS3 (also known as ARL6) are required for BBSome ciliary entry and that reduction of LZTFL1 restores BBSome trafficking to cilia in BBS3 and BBS5 depleted cells. Finally, we found that BBS proteins and LZTFL1 regulate ciliary trafficking of hedgehog signal transducer, Smoothened. Our findings suggest that LZTFL1 is an important regulator of BBSome ciliary trafficking and hedgehog signaling.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción/metabolismo , Animales , Síndrome de Bardet-Biedl/genética , Cilios/genética , Cilios/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Receptor Smoothened , Factores de Transcripción/genética
20.
Proc Natl Acad Sci U S A ; 108(51): 20678-83, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22139371

RESUMEN

Bardet-Biedl syndrome (BBS) is a heterogeneous disorder characterized by obesity, retinopathy, polydactyly, and congenital anomalies. The incidence of hypertension and diabetes are also increased in BBS patients. Mutation of 16 genes independently causes BBS, and seven BBS proteins form the BBSome that promotes ciliary membrane elongation. BBS3 (ARL6), an ADP ribosylation factor-like small GTPase, is not part of the BBSome complex. The in vivo function of BBS3 is largely unknown. Here we developed a Bbs3 knockout model and demonstrate that Bbs3(-/-) mice develop BBS-associated phenotypes, including retinal degeneration, male infertility, and increased body fat. Interestingly, Bbs3(-/-) mice develop some unique phenotypes not seen in other BBS knockout models: no overt obesity, severe hydrocephalus, and elevated blood pressure (shared by some but not all BBS gene knockout mice). We found that endogenous BBS3 and the BBSome physically interact and depend on each other for their ciliary localization. This finding explains the phenotypic similarity between Bbs3(-/-) mice and BBSome subunit knockout mice. Loss of Bbs3 does not affect BBSome formation but disrupts normal localization of melanin concentrating hormone receptor 1 to ciliary membranes and affects retrograde transport of Smoothened inside cilia. We also show that the endogenous BBSome and BBS3 associate with membranes and the membrane association of the BBSome and BBS3 are not interdependent. Differences between BBS mouse models suggest nonoverlapping functions to individual BBS protein.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Síndrome de Bardet-Biedl/genética , Mutación , Factores de Ribosilacion-ADP/fisiología , Animales , Encéfalo/metabolismo , Exones , Flagelos/metabolismo , Homocigoto , Humanos , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Obesidad/metabolismo , Fenotipo , Transporte de Proteínas , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA