Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phytopathology ; : PHYTO01240034R, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39007764

RESUMEN

Cercospora leaf spot, caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugarbeet worldwide. Resistance to the sterol demethylation inhibitor (DMI) fungicide tetraconazole has been previously correlated with synonymous and nonsynonymous mutations in CbCyp51. Here, we extend these analyses to the DMI fungicides prothioconazole, difenoconazole, and mefentrifluconazole in addition to tetraconazole to confirm whether the synonymous and nonsynonymous mutations at amino acid positions 144 and 170 are associated with resistance to these fungicides. Nearly half of the 593 isolates of C. beticola collected in the Red River Valley of North Dakota and Minnesota in 2021 were resistant to all four DMIs. Another 20% were resistant to tetraconazole and prothioconazole but sensitive to difenoconazole and mefentrifluconazole. A total of 13% of isolates were sensitive to all DMIs tested. We found five CbCyp51 haplotypes and associated them with phenotypes to the four DMIs. The most predominant haplotype (E170_A/L144F_C) correlated with resistance to all four DMIs with up to 97.6% accuracy. The second most common haplotype (E170_A/L144) consisted of isolates associated with resistance phenotypes to tetraconazole and prothioconazole while also exhibiting sensitive phenotypes to difenoconazole and mefentrifluconazole with up to 98.4% accuracy. Quantitative PCR did not identify differences in CbCyp51 expression between haplotypes. This study offers an understanding of the importance of codon usage in fungicide resistance and provides crop management acuity for fungicide application decision-making.

2.
Phytopathology ; 114(5): 1126-1136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38451582

RESUMEN

Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.


Asunto(s)
Beta vulgaris , Enfermedades de las Plantas , Virus de Plantas , Virus Satélites , Beta vulgaris/virología , Enfermedades de las Plantas/virología , Virus Satélites/genética , Virus Satélites/fisiología , Virus de Plantas/genética , Virus de Plantas/fisiología , Virus Helper/genética , Virus Helper/fisiología , ARN Viral/genética , Raíces de Plantas/virología , Genoma Viral/genética , Microbiología del Suelo
3.
Phytopathology ; 112(5): 1016-1028, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34844416

RESUMEN

Cercospora leaf spot (CLS) is a globally important disease of sugar beet (Beta vulgaris) caused by the fungus Cercospora beticola. Long-distance movement of C. beticola has been indirectly evidenced in recent population genetic studies, suggesting potential dispersal via seed. Commercial sugar beet "seed" consists of the reproductive fruit (true seed surrounded by maternal pericarp tissue) coated in artificial pellet material. In this study, we confirmed the presence of viable C. beticola in sugar beet fruit for 10 of 37 tested seed lots. All isolates harbored the G143A mutation associated with quinone outside inhibitor resistance, and 32 of 38 isolates had reduced demethylation inhibitor sensitivity (EC50 > 1 µg/ml). Planting of commercial sugar beet seed demonstrated the ability of seedborne inoculum to initiate CLS in sugar beet. C. beticola DNA was detected in DNA isolated from xylem sap, suggesting the vascular system is used to systemically colonize the host. We established nuclear ribosomal internal transcribed spacer region amplicon sequencing using the MinION platform to detect fungi in sugar beet fruit. Fungal sequences from 19 different genera were identified from 11 different sugar beet seed lots, but Fusarium, Alternaria, and Cercospora were consistently the three most dominant taxa, comprising an average of 93% relative read abundance over 11 seed lots. We also present evidence that C. beticola resides in the pericarp of sugar beet fruit rather than the true seed. The presence of seedborne inoculum should be considered when implementing integrated disease management strategies for CLS of sugar beet in the future.


Asunto(s)
Beta vulgaris , Cercospora , Beta vulgaris/microbiología , Frutas , Enfermedades de las Plantas/microbiología , Azúcares , Verduras
4.
Proc Natl Acad Sci U S A ; 115(24): E5459-E5466, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844193

RESUMEN

Species in the genus Cercospora cause economically devastating diseases in sugar beet, maize, rice, soy bean, and other major food crops. Here, we sequenced the genome of the sugar beet pathogen Cercospora beticola and found it encodes 63 putative secondary metabolite gene clusters, including the cercosporin toxin biosynthesis (CTB) cluster. We show that the CTB gene cluster has experienced multiple duplications and horizontal transfers across a spectrum of plant pathogenic fungi, including the wide-host range Colletotrichum genus as well as the rice pathogen Magnaporthe oryzae Although cercosporin biosynthesis has been thought to rely on an eight-gene CTB cluster, our phylogenomic analysis revealed gene collinearity adjacent to the established cluster in all CTB cluster-harboring species. We demonstrate that the CTB cluster is larger than previously recognized and includes cercosporin facilitator protein, previously shown to be involved with cercosporin autoresistance, and four additional genes required for cercosporin biosynthesis, including the final pathway enzymes that install the unusual cercosporin methylenedioxy bridge. Lastly, we demonstrate production of cercosporin by Colletotrichum fioriniae, the first known cercosporin producer within this agriculturally important genus. Thus, our results provide insight into the intricate evolution and biology of a toxin critical to agriculture and broaden the production of cercosporin to another fungal genus containing many plant pathogens of important crops worldwide.


Asunto(s)
Colletotrichum/genética , Genes Fúngicos/genética , Familia de Multigenes/genética , Perileno/análogos & derivados , ADN de Hongos/genética , Proteínas Fúngicas/genética , Malus/microbiología , Perileno/metabolismo , Enfermedades de las Plantas/microbiología
5.
Plant Dis ; 105(12): 3946-3955, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34213964

RESUMEN

Dickeya dianthicola has caused an outbreak of blackleg and soft rot of potato in the eastern half of the United States since 2015. To investigate genetic diversity of the pathogen, a comparative analysis was conducted on genomes of D. dianthicola strains. Whole genomes of 16 strains from the United States outbreak were assembled and compared with 16 previously sequenced genomes of D. dianthicola isolated from potato or carnation. Among the 32 strains, eight distinct clades were distinguished based on phylogenomic analysis. The outbreak strains were grouped into three clades, with the majority of the strains in clade I. Clade I strains were unique and homogeneous, suggesting a recent incursion of this strain into potato production from alternative hosts or environmental sources. The pangenome of the 32 strains contained 6,693 genes, 3,377 of which were core genes. By screening primary protein subunits associated with virulence from all U.S. strains, we found that many virulence-related gene clusters, such as plant cell wall degrading enzyme genes, flagellar and chemotaxis related genes, two-component regulatory genes, and type I/II/III secretion system genes, were highly conserved but that type IV and type VI secretion system genes varied. The clade I strains encoded two clusters of type IV secretion systems, whereas the clade II and III strains encoded only one cluster. Clade I and II strains encoded one more VgrG/PAAR spike protein than did clade III. Thus, we predicted that the presence of additional virulence-related genes may have enabled the unique clade I strain to become predominant in the U.S. outbreak.


Asunto(s)
Solanum tuberosum , Dickeya , Brotes de Enfermedades , Enfermedades de las Plantas , Estados Unidos
6.
Plant Dis ; 105(7): 1976-1983, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33210970

RESUMEN

An outbreak of blackleg and soft rot of potato, caused primarily by the bacterial pathogen Dickeya dianthicola, has resulted in significant economic losses in the northeastern United States since 2015. The spread of this seedborne disease is highly associated with seed distribution; therefore, the pathogen likely spread with seed tubers. To describe the blackleg epidemic and track inoculum origins, a total of 1,183 potato samples were collected from 11 states associated with blackleg outbreak from 2015 to 2019. Of these samples, 39.8% tested positive for D. dianthicola. Seventeen isolates of D. dianthicola were recovered from these samples and the genetic diversity of these isolates was examined. Fingerprinting with BOX-A1R-based repetitive extragenic palindromic PCR and phylogenetic analysis based on sequences of the 16S rRNA and gapA genes indicated that D. dianthicola isolates were divided into three genotypes, denoted types I, II, and III. Ninety-five percent of samples from Maine were type I. Type II was found in Maine only in 2015 and 2018. Type II was present throughout the 5 years in some states at a lower percentage than type I. Type III was found in Pennsylvania, New Jersey, and Massachusetts, but not in Maine. Therefore, type I appears to be associated with Maine, but type II appeared to be distributed throughout the northeastern United States. The type II and rarer type III strains were closer to the D. dianthicola type strain isolated from the United Kingdom. This work provides evidence that the outbreak of blackleg of potato in the northeastern United States was caused by multiple strains of D. dianthicola. The geographic origins of these strains remain unknown.


Asunto(s)
Solanum tuberosum , Dickeya , Brotes de Enfermedades , Genotipo , Geografía , Filogenia , Enfermedades de las Plantas , ARN Ribosómico 16S/genética , Estados Unidos
7.
Plant Dis ; 104(6): 1654-1661, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32282278

RESUMEN

Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is the most destructive disease of sugar beet worldwide. Although growing CLS-tolerant varieties is helpful, disease management currently requires timely application of fungicides. However, overreliance on fungicides has led to the emergence of fungicide resistance in many C. beticola populations, resulting in multiple epidemics in recent years. Therefore, this study focused on developing a fungicide resistance detection "toolbox" for early detection of C. beticola in sugar beet leaves and mutations associated with different fungicides in the pathogen population. A loop-mediated isothermal amplification (LAMP) method was developed for rapid detection of C. beticola in infected sugar beet leaves. The LAMP primers specific to C. beticola (Cb-LAMP) assay was able to detect C. beticola in inoculated sugar beet leaves as early as 1 day postinoculation. A quinone outside inhibitor (QoI)-LAMP assay was also developed to detect the G143A mutation in cytochrome b associated with QoI resistance in C. beticola. The assay detected the mutation in C. beticola both in vitro and in planta with 100% accuracy. We also developed a probe-based quantitative PCR (qPCR) assay for detecting an E198A mutation in ß-tubulin associated with benzimidazole resistance and a probe-based qPCR assay for detection of mutations in cytochrome P450-dependent sterol 14α-demethylase (Cyp51) associated with resistance to sterol demethylation inhibitor fungicides. The primers and probes used in the assay were highly efficient and precise in differentiating the corresponding fungicide-resistant mutants from sensitive wild-type isolates.


Asunto(s)
Ascomicetos , Beta vulgaris , Fungicidas Industriales , Mutación , Azúcares
8.
Environ Microbiol ; 21(3): 913-927, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30421572

RESUMEN

Perylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease or niche establishment. The sugar beet pathogen Cercospora beticola secretes the perylenequinone cercosporin during infection. We have shown recently that the cercosporin toxin biosynthesis (CTB) gene cluster is present in several other phytopathogenic fungi, prompting the search for biosynthetic gene clusters (BGCs) of structurally similar perylenequinones in other fungi. Here, we report the identification of the elsinochrome and phleichrome BGCs of Elsinoë fawcettii and Cladosporium phlei, respectively, based on gene cluster conservation with the CTB and hypocrellin BGCs. Furthermore, we show that previously reported BGCs for elsinochrome and phleichrome are involved in melanin production. Phylogenetic analysis of the corresponding melanin polyketide synthases (PKSs) and alignment of melanin BGCs revealed high conservation between the established and newly identified C. beticola, E. fawcettii and C. phlei melanin BGCs. Mutagenesis of the identified perylenequinone and melanin PKSs in C. beticola and E. fawcettii coupled with mass spectrometric metabolite analyses confirmed their roles in toxin and melanin production.


Asunto(s)
Ascomicetos/metabolismo , Cladosporium/metabolismo , Genes Fúngicos , Melaninas/biosíntesis , Familia de Multigenes , Perileno/análogos & derivados , Quinonas/metabolismo , Ascomicetos/genética , Vías Biosintéticas , Cladosporium/genética , Micotoxinas/biosíntesis , Perileno/metabolismo , Filogenia , Plantas/microbiología , Sintasas Poliquetidas/metabolismo
9.
Phytopathology ; 109(7): 1280-1292, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30785376

RESUMEN

Cercospora leaf spot, caused by Cercospora beticola, is a highly destructive disease of Beta vulgaris subsp. vulgaris worldwide. C. beticola populations are usually characterized by high genetic diversity, but little is known of the relationships among populations from different production regions around the world. This information would be informative of population origin and potential pathways for pathogen movement. For the current study, the genetic diversity, differentiation, and relationships among 948 C. beticola isolates in 28 populations across eight geographic regions were investigated using 12 microsatellite markers. Genotypic diversity, as measured by Simpson's complement index, ranged from 0.18 to 1.00, while pairwise index of differentiation values ranged from 0.02 to 0.42, with the greatest differentiation detected between two New York populations. In these populations, evidence for recent expansion was detected. Assessment of population structure identified two major clusters: the first associated with New York, and the second with Canada, Chile, Eurasia, Hawaii, Michigan, North Dakota, and one population from New York. Inferences of gene flow among these regions suggested that the source for one cluster likely is Eurasia, whereas the source for the other cluster is not known. These results suggest a shared origin of C. beticola populations across regions, except for part of New York, where population divergence has occurred. These findings support the hypothesis that dispersal of C. beticola occurs over long distances.


Asunto(s)
Beta vulgaris , Enfermedades de las Plantas/microbiología , Beta vulgaris/microbiología , Canadá , Chile , Variación Genética , Hawaii , Michigan , New York , North Dakota
10.
Fungal Genet Biol ; 92: 1-13, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27112724

RESUMEN

Cercospora beticola causes Cercospora leaf spot of sugar beet. Cercospora leaf spot management measures often include application of the sterol demethylation inhibitor (DMI) class of fungicides. The reliance on DMIs and the consequent selection pressures imposed by their widespread use has led to the emergence of resistance in C. beticola populations. Insight into the molecular basis of tetraconazole resistance may lead to molecular tools to identify DMI-resistant strains for fungicide resistance management programs. Previous work has shown that expression of the gene encoding the DMI target enzyme (CYP51) is generally higher and inducible in DMI-resistant C. beticola field strains. In this study, we extended the molecular basis of DMI resistance in this pathosystem by profiling the transcriptional response of two C. beticola strains contrasting for resistance to tetraconazole. A majority of the genes in the ergosterol biosynthesis pathway were induced to similar levels in both strains with the exception of CbCyp51, which was induced several-fold higher in the DMI-resistant strain. In contrast, a secondary metabolite gene cluster was induced in the resistance strain, but repressed in the sensitive strain. Genes encoding proteins with various cell membrane fortification processes were induced in the resistance strain. Site-directed and ectopic mutants of candidate DMI-resistance genes all resulted in significantly higher EC50 values than the wild-type strain, suggesting that the cell wall and/or membrane modified as a result of the transformation process increased resistance to tetraconazole. Taken together, this study identifies important cell membrane components and provides insight into the molecular events underlying DMI resistance in C. beticola.


Asunto(s)
Ascomicetos/genética , Farmacorresistencia Fúngica/genética , Ergosterol/genética , Esterol 14-Desmetilasa/genética , Inhibidores de 14 alfa Desmetilasa/farmacología , Ascomicetos/efectos de los fármacos , Secuencia de Bases , Clorobencenos/farmacología , Ergosterol/biosíntesis , Fungicidas Industriales/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Esterol 14-Desmetilasa/biosíntesis , Triazoles/farmacología
11.
Fungal Genet Biol ; 62: 43-54, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24216224

RESUMEN

Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species.


Asunto(s)
Ascomicetos/genética , Beta vulgaris/microbiología , Genes del Tipo Sexual de los Hongos , Evolución Molecular , Exones , Reproducción
12.
J Fungi (Basel) ; 10(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38535209

RESUMEN

Colletotrichum coccodes (Wallr.) Hughes is an asexual fungus with five vegetative compatibility groups. It was postulated that C. coccodes was isolated at the center of origin of potato at one time, and due to the movement of potato around the globe, the fungus was established on each continent but became bottlenecked and genetically unable to form stable heterokaryons via vegetative compatibility grouping (VCG) studies. The objectives of this study were (i) to determine if the VCGs around the world are related to the VCGs in Chile, (ii) to determine the diversity of C. coccodes populations in Chile, and (iii) to find any evidence for a cryptic sexual life cycle for this fungus. Worldwide C. coccodes populations have been found to be genetically correlated and belong to one or more C. coccodes-identified VCGs. The most distributed VCG in Chile was VCG2, which is the most common VCG in North America. We hypothesize that one or more VCGs had spread from Chile to the rest of the world. Precautions and further studies should be investigated by using other molecular markers and gene sequencing.

13.
Front Microbiol ; 15: 1403121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351298

RESUMEN

Introduction: Soft rot Pectobacteriaceae (SRP) bacteria are globally dispersed pathogens that cause significant economic loss in potato and other crops. Our understanding of the SRP species diversity has expanded in recent years due to advances and adoption of whole-genome sequence technologies. There are currently 34 recognized SRP species that belong to the Dickeya and Pectobacterium genera. Methods: We used whole-genome sequencing based analysis to describe the current distribution and epidemiology of SRP isolated from diseased potato samples obtained from commercial potato cropping systems in the United States. Our primary objectives in the present study were to: (1) identify the species of these SRP isolates recovered from potato samples across 14 states in the US, (2) describe the variation among SRP isolates from various US locations and track their temporal changes, and (3) evaluate the evolutionary relationships among these SRP isolates to deduce their source. We collected 118 SRP strains from diseased potato plants and tubers in 14 states between 2015 and 2022. Results: We identified three Dickeya and eight Pectobacterium species from diseased potato samples. Dickeya dianthicola, Pectobacterium parmentieri, P. carotovorum, and P. versatile appeared to be the predominant species, constituting 83% of the isolates. Furthermore, all D. dianthicola strains studied here as well as 90% of US D. dianthicola isolates sequenced to date exhibit significant clonality. Discussion: The prevalence of this specific group of D. dianthicola, temporally and geographically, aligns with the occurrence of blackleg and soft rot outbreaks in the northeastern US after 2014. The genomic diversity observed in P. parmentieri implies multiple introductions to the US from at least four distinct sources, earlier than the arrival of the predominant group of D. dianthicola. In contrast, P. carotovorum and P. versatile appear to be widespread, long-term endemic strains in the US.

14.
PLoS One ; 18(5): e0255764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216356

RESUMEN

Potatoes are a dietary staple consumed by a significant portion of the world, providing valuable carbohydrates and vitamins. However, most commercially produced potatoes have a high content of highly branched amylopectin starch, which generally results in a high glycemic index (GI). Consumption of foods with high levels of amylopectin elicit a rapid spike in blood glucose levels, which is undesirable for individuals who are pre-diabetic, diabetic, or obese. Some cultivars of potatoes with lower amylopectin levels have previously been identified and are commercially available in niche markets in some countries, but they are relatively unavailable in the United States and Latin America. The high glycemic index of widely available potatoes presents a problematic "consumer's dilemma" for individuals and families that may not be able to afford a better-balanced, more favorable diet. Some native communities in the Andes (Bolivia, Chile, and Peru) reportedly embrace a tradition of providing low glycemic tubers to people with obesity or diabetes to help people mitigate what is now understood as the negative effects of high blood sugar and obesity. These cultivars are not widely available on a global market. This study examines 60 potato cultivars to identify potatoes with low amylopectin. Three independent analyses of potato starch were used: microscopic examination of granule structure, water absorption, and spectrophotometric analysis of iodine complexes to identify potato cultivars with low amylopectin Differences among cultivars tested were detected by all three types of analyses. The most promising cultivars are Huckleberry Gold, Muru, Multa, Green Mountain, and an October Blue x Colorado Rose cross. Further work is necessary to document the ability of these low amylopectin cultivars to reduce blood glucose spike levels in human subjects.


Asunto(s)
Solanum tuberosum , Almidón , Humanos , Almidón/química , Amilopectina/química , Solanum tuberosum/química , Glucemia , Obesidad
15.
Phytopathology ; 102(3): 298-305, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22085297

RESUMEN

The hemibiotrophic fungus Cercospora beticola causes leaf spot of sugar beet. Leaf spot control measures include the application of sterol demethylation inhibitor (DMI) fungicides. However, reduced sensitivity to DMIs has been reported recently in the Red River Valley sugar beet-growing region of North Dakota and Minnesota. Here, we report the cloning and molecular characterization of CbCyp51, which encodes the DMI target enzyme sterol P450 14α-demethylase in C. beticola. CbCyp51 is a 1,632-bp intron-free gene with obvious homology to other fungal Cyp51 genes and is present as a single copy in the C. beticola genome. Five nucleotide haplotypes were identified which encoded three amino acid sequences. Protein variant 1 composed 79% of the sequenced isolates, followed by protein variant 2 that composed 18% of the sequences and a single isolate representative of protein variant 3. Because resistance to DMIs can be related to polymorphism in promoter or coding sequences, sequence diversity was assessed by sequencing >2,440 nucleotides encompassing CbCyp51 coding and flanking regions from isolates with varying EC(50) values (effective concentration to reduce growth by 50%) to DMI fungicides. However, no mutations or haplotypes were associated with DMI resistance or sensitivity. No evidence for alternative splicing or differential methylation of CbCyp51 was found that might explain reduced sensitivity to DMIs. However, CbCyp51 was overexpressed in isolates with high EC(50) values compared with isolates with low EC(50) values. After exposure to tetraconazole, isolates with high EC(50) values responded with further induction of CbCyp51, with a positive correlation of CbCyp51 expression and tetraconazole concentration up to 2.5 µg ml(-1).


Asunto(s)
Ascomicetos/enzimología , Beta vulgaris/microbiología , Farmacorresistencia Fúngica/genética , Esterol 14-Desmetilasa/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Secuencia de Bases , Clorobencenos/farmacología , Clonación Molecular , ADN Complementario/genética , ADN de Hongos/química , ADN de Hongos/genética , Dioxolanos/farmacología , Dosificación de Gen/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Haplotipos , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/microbiología , Análisis de Secuencia de ADN , Esterol 14-Desmetilasa/aislamiento & purificación , Triazoles/farmacología
16.
Plant Dis ; 96(12): 1749-1756, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30727253

RESUMEN

Cercospora leaf spot (CLS) of sugar beet is caused by the fungus Cercospora beticola. CLS management practices include the application of the sterol demethylation inhibitor (DMI) fungicides tetraconazole, difenoconazole, and prothioconazole. Evaluating resistance to DMIs is a major focus for CLS fungicide resistance management. Isolates were collected in 1997 and 1998 (baseline sensitivity to tetraconazole, prothioconazole, or difenoconazole) and 2007 through 2010 from the major sugar-beet-growing regions of Minnesota and North Dakota and assessed for in vitro sensitivity to two or three DMI fungicides. Most (47%) isolates collected in 1997-98 exhibited 50% effective concentration (EC50) values for tetraconazole of <0.01 µg ml-1, whereas no isolates could be found in this EC50 range in 2010. Since 2007, annual median and mean tetraconazole EC50 values have generally been increasing, and the frequency of isolates with EC50 values >0.11 µg ml-1 increased from 2008 to 2010. In contrast, the frequency of isolates with EC50 values for prothioconazole of >1.0 µg ml-1 has been decreasing since 2007. Annual median difenoconazole EC50 values appears to be stable, although annual mean EC50 values generally have been increasing for this fungicide. Although EC50 values are important for gauging fungicide sensitivity trends, a rigorous comparison of the relationship between in vitro EC50 values and loss of fungicide efficacy in planta has not been conducted for C. beticola. To explore this, 12 isolates exhibiting a wide range of tetraconazole EC50 values were inoculated to sugar beet but no tetraconazole was applied. No relationship was found between isolate EC50 value and disease severity. To assess whether EC50 values are related to fungicide efficacy in planta, sugar beet plants were sprayed with various dilutions of Eminent, the commercial formulation of tetraconazole, and subsequently inoculated with isolates that exhibited very low, medium, or high tetraconazole EC50 values. The high EC50 isolate caused significantly more disease than isolates with medium or very low EC50 values at the field application rate and most reduced rates. Because in vitro sensitivity testing is typically carried out with the active ingredient of the commercial fungicide, we investigated whether loss of disease control was the same for tetraconazole as for the commercial product Eminent. The high EC50 isolate caused more disease on plants treated with tetraconazole than Eminent but disease severity was not different between plants inoculated with the very low EC50 isolate.

17.
Plant Dis ; 96(9): 1323-1330, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30727161

RESUMEN

Isolates of Phytophthora infestans (n = 178) were collected in 2002 to 2009 from the eastern United States, Midwestern United States, and eastern Canada. Multilocus genotypes were defined using allozyme genotyping, and DNA fingerprinting with the RG-57 probe. Several previously described and three new mulitilocus genotypes were detected. The US-8 genotype was found commonly on commercial potato crops but not on tomato. US-20 was found on tomato in North Carolina from 2002 through 2007 and in Florida in 2005. US-21 was found on tomato in North Carolina in 2005 and Florida in 2006 and 2007. US-22 was detected on tomato in 2007 in Tennessee and New York and became widespread in 2009. US-22 was found in 12 states on tomato and potato and was spread on tomato transplants. This genotype accounted for about 60% of all the isolates genotyped. The US-23 genotype was found in Maryland, Virginia, Pennsylvania, and Delaware on both tomato and potato in 2009. The US-24 genotype was found only in North Dakota in 2009. A1 and A2 mating types were found in close proximity on potato and tomato crops in Pennsylvania and Virginia; therefore, the possibility of sexual reproduction should be monitored. Whereas most individuals of US-8 and US-20 were resistant to mefenoxam, US-21 appeared to be intermediately sensitive, and isolates of US-22, US-23, and US-24 were largely sensitive to mefenoxam. On the basis of sequence analysis of the ras gene, these latter three genotypes appear to have been derived from a common ancestor. Further field and laboratory studies are underway using simple sequence repeat genotyping to monitor current changes in the population structure of P. infestans causing late blight in North America.

18.
Sci Rep ; 12(1): 10719, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739218

RESUMEN

The fungus Cercospora beticola causes Cercospora Leaf Spot (CLS) of sugar beet (Beta vulgaris L.). Despite the global importance of this disease, durable resistance to CLS has still not been obtained. Therefore, the breeding of tolerant hybrids is a major goal for the sugar beet sector. Although recent studies have suggested that the leaf microbiome composition can offer useful predictors to assist plant breeders, this is an untapped resource in sugar beet breeding efforts. Using Ion GeneStudio S5 technology to sequence amplicons from seven 16S rRNA hypervariable regions, the most recurring endophytes discriminating CLS-symptomatic and symptomless sea beets (Beta vulgaris L.ssp. maritima) were identified. This allowed the design of taxon-specific primer pairs to quantify the abundance of the most representative endophytic species in large naturally occurring populations of sea beet and subsequently in sugar beet breeding genotypes under either CLS symptomless or infection stages using qPCR. Among the screened bacterial genera, Methylobacterium and Mucilaginibacter were found to be significantly (p < 0.05) more abundant in symptomatic sea beets with respect to symptomless. In cultivated sugar beet material under CLS infection, the comparison between resistant and susceptible genotypes confirmed that the susceptible genotypes hosted higher contents of the above-mentioned bacterial genera. These results suggest that the abundance of these species can be correlated with increased sensitivity to CLS disease. This evidence can further prompt novel protocols to assist plant breeding of sugar beet in the pursuit of improved pathogen resistance.


Asunto(s)
Ascomicetos , Beta vulgaris , Ascomicetos/genética , Beta vulgaris/genética , Cercospora , Endófitos/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética , Azúcares
19.
Genome Biol Evol ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34499119

RESUMEN

The rapid and widespread evolution of fungicide resistance remains a challenge for crop disease management. The demethylation inhibitor (DMI) class of fungicides is a widely used chemistry for managing disease, but there has been a gradual decline in efficacy in many crop pathosystems. Reliance on DMI fungicides has increased resistance in populations of the plant pathogenic fungus Cercospora beticola worldwide. To better understand the genetic and evolutionary basis for DMI resistance in C. beticola, a genome-wide association study (GWAS) and selective sweep analysis were conducted for the first time in this species. We performed whole-genome resequencing of 190 C. beticola isolates infecting sugar beet (Beta vulgaris ssp. vulgaris). All isolates were phenotyped for sensitivity to the DMI tetraconazole. Intragenic markers on chromosomes 1, 4, and 9 were significantly associated with DMI fungicide resistance, including a polyketide synthase gene and the gene encoding the DMI target CbCYP51. Haplotype analysis of CbCYP51 identified a synonymous mutation (E170) and nonsynonymous mutations (L144F, I387M, and Y464S) associated with DMI resistance. Genome-wide scans of selection showed that several of the GWAS mutations for fungicide resistance resided in regions that have recently undergone a selective sweep. Using radial plate growth on selected media as a fitness proxy, we did not find a trade-off associated with DMI fungicide resistance. Taken together, we show that population genomic data from a crop pathogen can allow the identification of mutations conferring fungicide resistance and inform about their origins in the pathogen population.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Ascomicetos/genética , Cercospora , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Estudio de Asociación del Genoma Completo
20.
Microorganisms ; 9(8)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34442812

RESUMEN

An outbreak of bacterial soft rot and blackleg of potato has occurred since 2014 with the epicenter being in the northeastern region of the United States. Multiple species of Pectobacterium and Dickeya are causal agents, resulting in losses to commercial and seed potato production over the past decade in the Northeastern and North Central United States. To clarify the pathogen present at the outset of the epidemic in 2015 and 2016, a phylogenetic study was made of 121 pectolytic soft rot bacteria isolated from symptomatic potato; also included were 27 type strains of Dickeya and Pectobacterium species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated dnaJ, dnaX and gyrB fragments revealed the epidemic isolates to cluster with type strains of D. chrysanthemi, D. dianthicola, D. dadantii, P. atrosepticum, P. brasiliense, P. carotovorum, P. parmentieri, P. polaris, P. punjabense, and P. versatile. Genetic diversity within D. dianthicola strains was low, with one sequence type (ST1) identified in 17 of 19 strains. Pectobacterium parmentieri was more diverse, with ten sequence types detected among 37 of the 2015-2016 strains. This study can aid in monitoring future shifts in potato soft rot pathogens within the U.S. and inform strategies for disease management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA