Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 24(1): 58, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408983

RESUMEN

BACKGROUND: To gain insight into the real-life care of patients in the healthcare system, data from hospital information systems and insurance systems are required. Consequently, linking clinical data with claims data is necessary. To ensure their syntactic and semantic interoperability, the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) from the Observational Health Data Sciences and Informatics (OHDSI) community was chosen. However, there is no detailed guide that would allow researchers to follow a generic process for data harmonization, i.e. the transformation of local source data into the standardized OMOP CDM format. Thus, the aim of this paper is to conceptualize a generic data harmonization process for OMOP CDM. METHODS: For this purpose, we conducted a literature review focusing on publications that address the harmonization of clinical or claims data in OMOP CDM. Subsequently, the process steps used and their chronological order as well as applied OHDSI tools were extracted for each included publication. The results were then compared to derive a generic sequence of the process steps. RESULTS: From 23 publications included, a generic data harmonization process for OMOP CDM was conceptualized, consisting of nine process steps: dataset specification, data profiling, vocabulary identification, coverage analysis of vocabularies, semantic mapping, structural mapping, extract-transform-load-process, qualitative and quantitative data quality analysis. Furthermore, we identified seven OHDSI tools which supported five of the process steps. CONCLUSIONS: The generic data harmonization process can be used as a step-by-step guide to assist other researchers in harmonizing source data in OMOP CDM.


Asunto(s)
Informática Médica , Vocabulario , Humanos , Bases de Datos Factuales , Ciencia de los Datos , Semántica , Registros Electrónicos de Salud
2.
Artículo en Alemán | MEDLINE | ID: mdl-38750239

RESUMEN

Health data are extremely important in today's data-driven world. Through automation, healthcare processes can be optimized, and clinical decisions can be supported. For any reuse of data, the quality, validity, and trustworthiness of data are essential, and it is the only way to guarantee that data can be reused sensibly. Specific requirements for the description and coding of reusable data are defined in the FAIR guiding principles for data stewardship. Various national research associations and infrastructure projects in the German healthcare sector have already clearly positioned themselves on the FAIR principles: both the infrastructures of the Medical Informatics Initiative and the University Medicine Network operate explicitly on the basis of the FAIR principles, as do the National Research Data Infrastructure for Personal Health Data and the German Center for Diabetes Research.To ensure that a resource complies with the FAIR principles, the degree of FAIRness should first be determined (so-called FAIR assessment), followed by the prioritization for improvement steps (so-called FAIRification). Since 2016, a set of tools and guidelines have been developed for both steps, based on the different, domain-specific interpretations of the FAIR principles.Neighboring European countries have also invested in the development of a national framework for semantic interoperability in the context of the FAIR (Findable, Accessible, Interoperable, Reusable) principles. Concepts for comprehensive data enrichment were developed to simplify data analysis, for example, in the European Health Data Space or via the Observational Health Data Sciences and Informatics network. With the support of the European Open Science Cloud, among others, structured FAIRification measures have already been taken for German health datasets.


Asunto(s)
Registros Electrónicos de Salud , Humanos , Alemania , Internacionalidad , Programas Nacionales de Salud
3.
Artículo en Alemán | MEDLINE | ID: mdl-38753021

RESUMEN

The digital health progress hubs pilot the extensibility of the concepts and solutions of the Medical Informatics Initiative to improve regional healthcare and research. The six funded projects address different diseases, areas in regional healthcare, and methods of cross-institutional data linking and use. Despite the diversity of the scenarios and regional conditions, the technical, regulatory, and organizational challenges and barriers that the progress hubs encounter in the actual implementation of the solutions are often similar. This results in some common approaches to solutions, but also in political demands that go beyond the Health Data Utilization Act, which is considered a welcome improvement by the progress hubs.In this article, we present the digital progress hubs and discuss achievements, challenges, and approaches to solutions that enable the shared use of data from university hospitals and non-academic institutions in the healthcare system and can make a sustainable contribution to improving medical care and research.


Asunto(s)
Hospitales Universitarios , Hospitales Universitarios/organización & administración , Alemania , Humanos , Registro Médico Coordinado/métodos , Registros Electrónicos de Salud/tendencias , Modelos Organizacionales , Programas Nacionales de Salud/tendencias , Programas Nacionales de Salud/organización & administración , Informática Médica/organización & administración , Informática Médica/tendencias , Salud Digital
4.
J Med Internet Res ; 25: e45948, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37486754

RESUMEN

The vast and heterogeneous data being constantly generated in clinics can provide great wealth for patients and research alike. The quickly evolving field of medical informatics research has contributed numerous concepts, algorithms, and standards to facilitate this development. However, these difficult relationships, complex terminologies, and multiple implementations can present obstacles for people who want to get active in the field. With a particular focus on medical informatics research conducted in Germany, we present in our Viewpoint a set of 10 important topics to improve the overall interdisciplinary communication between different stakeholders (eg, physicians, computational experts, experimentalists, students, patient representatives). This may lower the barriers to entry and offer a starting point for collaborations at different levels. The suggested topics are briefly introduced, then general best practice guidance is given, and further resources for in-depth reading or hands-on tutorials are recommended. In addition, the topics are set to cover current aspects and open research gaps of the medical informatics domain, including data regulations and concepts; data harmonization and processing; and data evaluation, visualization, and dissemination. In addition, we give an example on how these topics can be integrated in a medical informatics curriculum for higher education. By recognizing these topics, readers will be able to (1) set clinical and research data into the context of medical informatics, understanding what is possible to achieve with data or how data should be handled in terms of data privacy and storage; (2) distinguish current interoperability standards and obtain first insights into the processes leading to effective data transfer and analysis; and (3) value the use of newly developed technical approaches to utilize the full potential of clinical data.


Asunto(s)
Informática Médica , Humanos , Curriculum , Algoritmos , Alemania
5.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233137

RESUMEN

The current generation of sequencing technologies has led to significant advances in identifying novel disease-associated mutations and generated large amounts of data in a high-throughput manner. Such data in conjunction with clinical routine data are proven to be highly useful in deriving population-level and patient-level predictions, especially in the field of cancer precision medicine. However, data harmonization across multiple national and international clinical sites is an essential step for the assessment of events and outcomes associated with patients, which is currently not adequately addressed. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an internationally established research data repository introduced by the Observational Health Data Science and Informatics (OHDSI) community to overcome this issue. To address the needs of cancer research, the genomic vocabulary extension was introduced in 2020 to support the standardization of subsequent data analysis. In this review, we evaluate the current potential of the OMOP CDM to be applicable in cancer prediction and how comprehensively the genomic vocabulary extension of the OMOP can serve current needs of AI-based predictions. For this, we systematically screened the literature for articles that use the OMOP CDM in predictive analyses in cancer and investigated the underlying predictive models/tools. Interestingly, we found 248 articles, of which most use the OMOP for harmonizing their data, but only 5 make use of predictive algorithms on OMOP-based data and fulfill our criteria. The studies present multicentric investigations, in which the OMOP played an essential role in discovering and optimizing machine learning (ML)-based models. Ultimately, the use of the OMOP CDM leads to standardized data-driven studies for multiple clinical sites and enables a more solid basis utilizing, e.g., ML models that can be reused and combined in early prediction, diagnosis, and improvement of personalized cancer care and biomarker discovery.


Asunto(s)
Informática Médica , Neoplasias , Biomarcadores , Análisis de Datos , Bases de Datos Factuales , Registros Electrónicos de Salud , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisión
6.
BMC Musculoskelet Disord ; 22(1): 783, 2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34511058

RESUMEN

BACKGROUND: Total knee replacement (TKR) is one of the most commonly performed routine procedures in the world. Prognostic studies indicate that the number of TKR will further increase constituting growing burden on healthcare systems. There is also substantial regional heterogeneity in TKR rates within and between countries. Despite the known therapeutic effects, a subset of patients undergoing TKR does not benefit from the procedure as intended. To improve the appropriateness of TKR indication, the EKIT initiative ("evidence and consensus based indication critera for total arthroplasty") developed a clinical guideline for Germany on the indication of TKR. This guideline is the basis for a digital medical decision aid (EKIT tool) to facilitate shared decision making (SDM) in order to improve decision quality for elective surgery. The aim of this cluster randomized trial is to investigate the effectiveness of the EKIT tool on decision quality. METHODS: The Value-based TKR study is a prospective pragmatic multi-center, stepped wedge, cluster randomized controlled trial (SW-RCT). The EKIT tool provides (1) a systematic presentation of individual patient and disease-specific information (symptoms, expectations), (2) the fulfillment of the indication criteria and (3) health information about safety and effectiveness of TKR. All study sites will follow routine care as control clusters until the start of the intervention. In total, there will be 10 clusters (study sites) and 6 sequential steps over 16 month, with clusters receiving the intervention with a minimum 2 months of standard routine care. The primary outcome is patients' decision quality measured with the Decision Quality Instrument (DQI)-Knee Osteoarthritis questionnaire. Furthermore, we will collect information on global patient satisfaction, patient reported outcome measures and the fulfilment of the individual expectations 12 months after SDM. The power calculation yielded an estimated power of 89% using robust Poisson regression under the following assumptions: 10 study sites with a total of N=1,080 patients (including a dropout rate of 11%), a 10% increase in decision quality due to the use of the EKIT tool, and a significance level of 5%. DISCUSSION: There is a high potential for transferring the intervention into routine practice if the evaluation is positive. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04837053 . Registered on 08/04/2021.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla , Médicos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Técnicas de Apoyo para la Decisión , Humanos , Estudios Multicéntricos como Asunto , Osteoartritis de la Rodilla/diagnóstico , Osteoartritis de la Rodilla/cirugía , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
BMC Med Inform Decis Mak ; 21(1): 65, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602191

RESUMEN

BACKGROUND: Rare Diseases (RDs) are difficult to diagnose. Clinical Decision Support Systems (CDSS) could support the diagnosis for RDs. The Medical Informatics in Research and Medicine (MIRACUM) consortium developed a CDSS for RDs based on distributed clinical data from eight German university hospitals. To support the diagnosis for difficult patient cases, the CDSS uses data from the different hospitals to perform a patient similarity analysis to obtain an indication of a diagnosis. To optimize our CDSS, we conducted a qualitative study to investigate usability and functionality of our designed CDSS. METHODS: We performed a Thinking Aloud Test (TA-Test) with RDs experts working in Rare Diseases Centers (RDCs) at MIRACUM locations which are specialized in diagnosis and treatment of RDs. An instruction sheet with tasks was prepared that the participants should perform with the CDSS during the study. The TA-Test was recorded on audio and video, whereas the resulting transcripts were analysed with a qualitative content analysis, as a ruled-guided fixed procedure to analyse text-based data. Furthermore, a questionnaire was handed out at the end of the study including the System Usability Scale (SUS). RESULTS: A total of eight experts from eight MIRACUM locations with an established RDC were included in the study. Results indicate that more detailed information about patients, such as descriptive attributes or findings, can help the system perform better. The system was rated positively in terms of functionality, such as functions that enable the user to obtain an overview of similar patients or medical history of a patient. However, there is a lack of transparency in the results of the CDSS patient similarity analysis. The study participants often stated that the system should present the user with an overview of exact symptoms, diagnosis, and other characteristics that define two patients as similar. In the usability section, the CDSS received a score of 73.21 points, which is ranked as good usability. CONCLUSIONS: This qualitative study investigated the usability and functionality of a CDSS of RDs. Despite positive feedback about functionality of system, the CDSS still requires some revisions and improvement in transparency of the patient similarity analysis.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Hospitales , Humanos , Investigación Cualitativa , Enfermedades Raras/diagnóstico , Enfermedades Raras/terapia
8.
BMC Med Inform Decis Mak ; 20(1): 230, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938448

RESUMEN

BACKGROUND: Patients with rare diseases (RDs) are often diagnosed too late or not at all. Clinical decision support systems (CDSSs) could support the diagnosis in RDs. The MIRACUM (Medical Informatics in Research and Medicine) consortium, which is one of four funded consortia in the German Medical Informatics Initiative, will develop a CDSS for RDs based on distributed clinical data from ten university hospitals. This qualitative study aims to investigate (1) the relevant organizational conditions for the operation of a CDSS for RDs when diagnose patients (e.g. the diagnosis workflow), (2) which data is necessary for decision support, and (3) the appropriate user group for such a CDSS. METHODS: Interviews were carried out with RDs experts. Participants were recruited from staff physicians at the Rare Disease Centers (RDCs) at the MIRACUM locations, which offer diagnosis and treatment of RDs. An interview guide was developed with a category-guided deductive approach. The interviews were recorded on an audio device and then transcribed into written form. We continued data collection until all interviews were completed. Afterwards, data analysis was performed using Mayring's qualitative content analysis approach. RESULTS: A total of seven experts were included in the study. The results show that medical center guides and physicians from RDC B-centers (with a focus on different RDs) are involved in the diagnostic process. Furthermore, interdisciplinary case discussions between physicians are conducted. The experts explained that RDs exist which cannot be fully differentiated, but rather described only by their overall symptoms or findings: diagnosis is dependent on the disease or disease group. At the end of the diagnostic process, most centers prepare a summary of the patient case. Furthermore, the experts considered both physicians and experts from the B-centers to be potential users of a CDSS. The experts also have different experiences with CDSS for RDs. CONCLUSIONS: This qualitative study is a first step towards establishing the requirements for the development of a CDSS for RDs. Further research is necessary to create solutions by also including the experts on RDs.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Enfermedades Raras , Niño , Femenino , Humanos , Masculino , Médicos , Investigación Cualitativa , Enfermedades Raras/diagnóstico , Enfermedades Raras/terapia , Programas Informáticos
9.
J Biomed Inform ; 100: 103314, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31629921

RESUMEN

Searching for patient cohorts in electronic patient data often requires the definition of temporal constraints between the selection criteria. However, beyond a certain degree of temporal complexity, the non-graphical, form-based approaches implemented in current translational research platforms may be limited when modeling such constraints. In our opinion, there is a need for an easily accessible and implementable, fully graphical method for creating temporal queries. We aim to respond to this challenge with a new graphical notation. Based on Allen's time interval algebra, it allows for modeling temporal queries by arranging simple horizontal bars depicting symbolic time intervals. To make our approach applicable to complex temporal patterns, we apply two extensions: with duration intervals, we enable the inference about relative temporal distances between patient events, and with time interval modifiers, we support counting and excluding patient events, as well as constraining numeric values. We describe how to generate database queries from this notation. We provide a prototypical implementation, consisting of a temporal query modeling frontend and an experimental backend that connects to an i2b2 system. We evaluate our modeling approach on the MIMIC-III database to demonstrate that it can be used for modeling typical temporal phenotyping queries.


Asunto(s)
Gráficos por Computador , Simulación por Computador , Algoritmos , Bases de Datos Factuales , Humanos , Almacenamiento y Recuperación de la Información , Tiempo
11.
BMC Med Inform Decis Mak ; 17(1): 81, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587608

RESUMEN

BACKGROUND: Pharmacogenomic clinical decision support systems (CDSS) have the potential to help overcome some of the barriers for translating pharmacogenomic knowledge into clinical routine. Before developing a prototype it is crucial for developers to know which pharmacogenomic CDSS features and user-system interactions have yet been developed, implemented and tested in previous pharmacogenomic CDSS efforts and if they have been successfully applied. We address this issue by providing an overview of the designs of user-system interactions of recently developed pharmacogenomic CDSS. METHODS: We searched PubMed for pharmacogenomic CDSS published between January 1, 2012 and November 15, 2016. Thirty-two out of 118 identified articles were summarized and included in the final analysis. We then compared the designs of user-system interactions of the 20 pharmacogenomic CDSS we had identified. RESULTS: Alerts are the most widespread tools for physician-system interactions, but need to be implemented carefully to prevent alert fatigue and avoid liabilities. Pharmacogenomic test results and override reasons stored in the local EHR might help communicate pharmacogenomic information to other internal care providers. Integrating patients into user-system interactions through patient letters and online portals might be crucial for transferring pharmacogenomic data to external health care providers. Inbox messages inform physicians about new pharmacogenomic test results and enable them to request pharmacogenomic consultations. Search engines enable physicians to compare medical treatment options based on a patient's genotype. CONCLUSIONS: Within the last 5 years, several pharmacogenomic CDSS have been developed. However, most of the included articles are solely describing prototypes of pharmacogenomic CDSS rather than evaluating them. To support the development of prototypes further evaluation efforts will be necessary. In the future, pharmacogenomic CDSS will likely include prediction models to identify patients who are suitable for preemptive genotyping.


Asunto(s)
Sistemas de Computación/normas , Sistemas de Apoyo a Decisiones Clínicas/normas , Pruebas de Farmacogenómica/normas , Medicina de Precisión/normas , Humanos
12.
Telemed J E Health ; 22(10): 798-808, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27285946

RESUMEN

AIMS: Recently, a permanently implantable wireless system, designed to monitor and manage pulmonary artery (PA) pressures remotely, demonstrated significant reductions in heart failure (HF) hospitalizations in high-risk symptomatic patients, regardless of ejection fraction. The objectives of this study were to simulate the estimated clinical and economic impact in Germany of generalized use of this PA pressure monitoring system considering reductions of HF hospitalizations and the improvement in Quality of Life. MATERIALS AND METHODS: Based on the Prospective Health Technology Assessment approach, we simulated the potential of the widespread application of PA pressure monitoring on the German healthcare system for the period 2009-2021. RESULTS: This healthcare economic simulation formulated input assumptions based on results from the CHAMPION Trial, a multicenter, prospective, randomized controlled U.S. trial that demonstrated a 37% reduction of hospitalizations in persistently symptomatic previous HF patients. Based on these results, an estimated 114,800 hospitalizations would expected to be avoided. This effect would potentially save an estimated €522 million, an equivalent of $575 million, during the entire simulation period. CONCLUSION: This healthcare economic modeling of the PA pressure monitoring system's impact demonstrates substantial clinical and economic benefits in the German healthcare system.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial/métodos , Insuficiencia Cardíaca/economía , Insuficiencia Cardíaca/fisiopatología , Arteria Pulmonar , Tecnología de Sensores Remotos/métodos , Telemedicina/métodos , Anciano , Anciano de 80 o más Años , Monitoreo Ambulatorio de la Presión Arterial/economía , Monitoreo Ambulatorio de la Presión Arterial/instrumentación , Simulación por Computador , Femenino , Alemania , Hospitalización/economía , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Calidad de Vida , Tecnología de Sensores Remotos/economía , Tecnología de Sensores Remotos/instrumentación , Telemedicina/economía , Telemedicina/instrumentación
13.
Ergonomics ; 59(1): 39-47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26223868

RESUMEN

The amount of information to be processed by drivers increases with the number of driver assistance systems (DAS). This implies that all relevant perception channels have to be used to convey information. The paper's contribution is to enable system designers to use differences in longitudinal acceleration as an information element in DAS. We conduct a study of the actual application context and examine the perceptible difference in longitudinal acceleration (kinaesthetic distortion). Thereby, we discuss dependencies of the perceptible difference on speed and acceleration immediately before the distortion. Furthermore, we investigate the spread of perceptional performance of different drivers. The results demonstrate smaller perceptible differences in acceleration at higher speed and weaker perception when the acceleration immediately before the warning is greater. This paper aims to provide a guideline for the implementation of brake warnings for informative DAS and for the adaption of the brake intensity according to current vehicle dynamics. PRACTITIONER SUMMARY: This paper aims to enable the kinaesthetic perception channel for informative driver assistance systems. A real world driving study reveals the perceptible difference in longitudinal acceleration (kinaesthetic distortion) depending on vehicle speed and acceleration and serves as a guideline for applying brake warnings as an information element in vehicles.


Asunto(s)
Aceleración , Conducción de Automóvil/psicología , Automóviles , Ilusiones/psicología , Percepción , Equipos de Seguridad , Adulto , Diseño de Equipo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tiempo de Reacción , Adulto Joven
14.
BMC Med Inform Decis Mak ; 15: 17, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25888747

RESUMEN

BACKGROUND: Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain. METHODS: MEDLINE was searched in July 2013 and in December 2014 for publications containing the terms "cloud computing" and "cloud-based". Each journal and conference article was categorized and summarized independently by two researchers who consolidated their findings. RESULTS: 102 publications have been analyzed and 6 main topics have been found: telemedicine/teleconsultation, medical imaging, public health and patient self-management, hospital management and information systems, therapy, and secondary use of data. Commonly used features are broad network access for sharing and accessing data and rapid elasticity to dynamically adapt to computing demands. Eight articles favor the pay-for-use characteristics of cloud-based services avoiding upfront investments. Nevertheless, while 22 articles present very general potentials of cloud computing in the medical domain and 66 articles describe conceptual or prototypic projects, only 14 articles report from successful implementations. Further, in many articles cloud computing is seen as an analogy to internet-/web-based data sharing and the characteristics of the particular cloud computing approach are unfortunately not really illustrated. CONCLUSIONS: Even though cloud computing in healthcare is of growing interest only few successful implementations yet exist and many papers just use the term "cloud" synonymously for "using virtual machines" or "web-based" with no described benefit of the cloud paradigm. The biggest threat to the adoption in the healthcare domain is caused by involving external cloud partners: many issues of data safety and security are still to be solved. Until then, cloud computing is favored more for singular, individual features such as elasticity, pay-per-use and broad network access, rather than as cloud paradigm on its own.


Asunto(s)
Nube Computacional , Atención a la Salud , Humanos
15.
Sci Rep ; 14(1): 2287, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280887

RESUMEN

The emergence of collaborations, which standardize and combine multiple clinical databases across different regions, provide a wealthy source of data, which is fundamental for clinical prediction models, such as patient-level predictions. With the aid of such large data pools, researchers are able to develop clinical prediction models for improved disease classification, risk assessment, and beyond. To fully utilize this potential, Machine Learning (ML) methods are commonly required to process these large amounts of data on disease-specific patient cohorts. As a consequence, the Observational Health Data Sciences and Informatics (OHDSI) collaborative develops a framework to facilitate the application of ML models for these standardized patient datasets by using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). In this study, we compare the feasibility of current web-based OHDSI approaches, namely ATLAS and "Patient-level Prediction" (PLP), against a native solution (R based) to conduct such ML-based patient-level prediction analyses in OMOP. This will enable potential users to select the most suitable approach for their investigation. Each of the applied ML solutions was individually utilized to solve the same patient-level prediction task. Both approaches went through an exemplary benchmarking analysis to assess the weaknesses and strengths of the PLP R-Package. In this work, the performance of this package was subsequently compared versus the commonly used native R-package called Machine Learning in R 3 (mlr3), and its sub-packages. The approaches were evaluated on performance, execution time, and ease of model implementation. The results show that the PLP package has shorter execution times, which indicates great scalability, as well as intuitive code implementation, and numerous possibilities for visualization. However, limitations in comparison to native packages were depicted in the implementation of specific ML classifiers (e.g., Lasso), which may result in a decreased performance for real-world prediction problems. The findings here contribute to the overall effort of developing ML-based prediction models on a clinical scale and provide a snapshot for future studies that explicitly aim to develop patient-level prediction models in OMOP CDM.


Asunto(s)
Aprendizaje Automático , Informática Médica , Humanos , Bases de Datos Factuales , Registros Electrónicos de Salud
16.
Health Informatics J ; 30(2): 14604582241259322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855877

RESUMEN

Patients with rare diseases commonly suffer from severe symptoms as well as chronic and sometimes life-threatening effects. Not only the rarity of the diseases but also the poor documentation of rare diseases often leads to an immense delay in diagnosis. One of the main problems here is the inadequate coding with common classifications such as the International Statistical Classification of Diseases and Related Health Problems. Instead, the ORPHAcode enables precise naming of the diseases. So far, just few approaches report in detail how the technical implementation of the ORPHAcode is done in clinical practice and for research. We present a concept and implementation of storing and mapping of ORPHAcodes. The Transition Database for Rare Diseases contains all the information of the Orphanet catalog and serves as the basis for documentation in the clinical information system as well as for monitoring Key Performance Indicators for rare diseases at the hospital. The five-step process (especially using open source tools and the DataVault 2.0 logic) for set-up the Transition Database allows the approach to be adapted to local conditions as well as to be extended for additional terminologies and ontologies.


Asunto(s)
Bases de Datos Factuales , Documentación , Enfermedades Raras , Enfermedades Raras/clasificación , Enfermedades Raras/diagnóstico , Humanos , Documentación/métodos , Documentación/normas , Clasificación Internacional de Enfermedades/tendencias , Clasificación Internacional de Enfermedades/normas
17.
Stud Health Technol Inform ; 310: 1271-1275, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270019

RESUMEN

To understand and handle the COVID-19 pandemic, digital tools and infrastructures were built in very short timeframes, resulting in stand-alone and non-interoperable solutions. To shape an interoperable, sustainable, and extensible ecosystem to advance biomedical research and healthcare during the pandemic and beyond, a short-term project called "Collaborative Data Exchange and Usage" (CODEX+) was initiated to integrate and connect multiple COVID-19 projects into a common organizational and technical framework. In this paper, we present the conceptual design, provide an overview of the results, and discuss the impact of such a project for the trade-off between innovation and sustainable infrastructures.


Asunto(s)
Investigación Biomédica , COVID-19 , Humanos , Centros Médicos Académicos , COVID-19/epidemiología , Instituciones de Salud , Pandemias
18.
JMIR Med Inform ; 12: e52967, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354027

RESUMEN

BACKGROUND: Multisite clinical studies are increasingly using real-world data to gain real-world evidence. However, due to the heterogeneity of source data, it is difficult to analyze such data in a unified way across clinics. Therefore, the implementation of Extract-Transform-Load (ETL) or Extract-Load-Transform (ELT) processes for harmonizing local health data is necessary, in order to guarantee the data quality for research. However, the development of such processes is time-consuming and unsustainable. A promising way to ease this is the generalization of ETL/ELT processes. OBJECTIVE: In this work, we investigate existing possibilities for the development of generic ETL/ELT processes. Particularly, we focus on approaches with low development complexity by using descriptive metadata and structural metadata. METHODS: We conducted a literature review following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We used 4 publication databases (ie, PubMed, IEEE Explore, Web of Science, and Biomed Center) to search for relevant publications from 2012 to 2022. The PRISMA flow was then visualized using an R-based tool (Evidence Synthesis Hackathon). All relevant contents of the publications were extracted into a spreadsheet for further analysis and visualization. RESULTS: Regarding the PRISMA guidelines, we included 33 publications in this literature review. All included publications were categorized into 7 different focus groups (ie, medicine, data warehouse, big data, industry, geoinformatics, archaeology, and military). Based on the extracted data, ontology-based and rule-based approaches were the 2 most used approaches in different thematic categories. Different approaches and tools were chosen to achieve different purposes within the use cases. CONCLUSIONS: Our literature review shows that using metadata-driven (MDD) approaches to develop an ETL/ELT process can serve different purposes in different thematic categories. The results show that it is promising to implement an ETL/ELT process by applying MDD approach to automate the data transformation from Fast Healthcare Interoperability Resources to Observational Medical Outcomes Partnership Common Data Model. However, the determining of an appropriate MDD approach and tool to implement such an ETL/ELT process remains a challenge. This is due to the lack of comprehensive insight into the characterizations of the MDD approaches presented in this study. Therefore, our next step is to evaluate the MDD approaches presented in this study and to determine the most appropriate MDD approaches and the way to integrate them into the ETL/ELT process. This could verify the ability of using MDD approaches to generalize the ETL process for harmonizing medical data.

19.
Front Med (Lausanne) ; 11: 1377209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903818

RESUMEN

Introduction: Obtaining real-world data from routine clinical care is of growing interest for scientific research and personalized medicine. Despite the abundance of medical data across various facilities - including hospitals, outpatient clinics, and physician practices - the intersectoral exchange of information remains largely hindered due to differences in data structure, content, and adherence to data protection regulations. In response to this challenge, the Medical Informatics Initiative (MII) was launched in Germany, focusing initially on university hospitals to foster the exchange and utilization of real-world data through the development of standardized methods and tools, including the creation of a common core dataset. Our aim, as part of the Medical Informatics Research Hub in Saxony (MiHUBx), is to extend the MII concepts to non-university healthcare providers in a more seamless manner to enable the exchange of real-world data among intersectoral medical sites. Methods: We investigated what services are needed to facilitate the provision of harmonized real-world data for cross-site research. On this basis, we designed a Service Platform Prototype that hosts services for data harmonization, adhering to the globally recognized Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) international standard communication format and the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). Leveraging these standards, we implemented additional services facilitating data utilization, exchange and analysis. Throughout the development phase, we collaborated with an interdisciplinary team of experts from the fields of system administration, software engineering and technology acceptance to ensure that the solution is sustainable and reusable in the long term. Results: We have developed the pre-built packages "ResearchData-to-FHIR," "FHIR-to-OMOP," and "Addons," which provide the services for data harmonization and provision of project-related real-world data in both the FHIR MII Core dataset format (CDS) and the OMOP CDM format as well as utilization and a Service Platform Prototype to streamline data management and use. Conclusion: Our development shows a possible approach to extend the MII concepts to non-university healthcare providers to enable cross-site research on real-world data. Our Service Platform Prototype can thus pave the way for intersectoral data sharing, federated analysis, and provision of SMART-on-FHIR applications to support clinical decision making.

20.
PLoS One ; 19(1): e0297039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38295046

RESUMEN

BACKGROUND: The COVID-19 pandemic revealed a need for better collaboration among research, care, and management in Germany as well as globally. Initially, there was a high demand for broad data collection across Germany, but as the pandemic evolved, localized data became increasingly necessary. Customized dashboards and tools were rapidly developed to provide timely and accurate information. In Saxony, the DISPENSE project was created to predict short-term hospital bed capacity demands, and while it was successful, continuous adjustments and the initial monolithic system architecture of the application made it difficult to customize and scale. METHODS: To analyze the current state of the DISPENSE tool, we conducted an in-depth analysis of the data processing steps and identified data flows underlying users' metrics and dashboards. We also conducted a workshop to understand the different views and constraints of specific user groups, and brought together and clustered the information according to content-related service areas to determine functionality-related service groups. Based on this analysis, we developed a concept for the system architecture, modularized the main services by assigning specialized applications and integrated them into the existing system, allowing for self-service reporting and evaluation of the expert groups' needs. RESULTS: We analyzed the applications' dataflow and identified specific user groups. The functionalities of the monolithic application were divided into specific service groups for data processing, data storage, predictions, content visualization, and user management. After composition and implementation, we evaluated the new system architecture against the initial requirements by enabling self-service reporting to the users. DISCUSSION: By modularizing the monolithic application and creating a more flexible system, the challenges of rapidly changing requirements, growing need for information, and high administrative efforts were addressed. CONCLUSION: We demonstrated an improved adaptation towards the needs of various user groups, increased efficiency, and reduced burden on administrators, while also enabling self-service functionalities and specialization of single applications on individual service groups.


Asunto(s)
Almacenamiento y Recuperación de la Información , Pandemias , Humanos , Recolección de Datos , Alemania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA