Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Immunol ; 208(7): 1554-1565, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35321879

RESUMEN

Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic ß cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Trasplante de Células Madre Hematopoyéticas , Animales , Enfermedades Autoinmunes/terapia , Diabetes Mellitus Tipo 1/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas , Humanos , Ratones , Ratones Endogámicos NOD
2.
J Immunol ; 206(6): 1117-1125, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33685919

RESUMEN

Since they were discovered almost three decades ago, a subset of B cells denoted as regulatory B cells (Bregs) have elicited interest throughout the immunology community. Many investigators have sought to characterize their phenotype and to understand their function and immunosuppressive mechanisms. Indeed, studies in murine models have demonstrated that Bregs possess varied phenotypic markers and could be classified into different subsets whose action and pivotal role depend on the pathological condition or stimuli. Similar conclusions were drawn in clinical settings delineating an analogous Breg population phenotypically resembling the murine Bregs that ultimately may be associated with a state of tolerance. Recent studies suggested that Bregs may play a role in the onset of autoimmune diabetes. This review will focus on deciphering the different subclasses of Bregs, their emerging role in autoimmune diabetes, and their potential use as a cell-based therapeutic.


Asunto(s)
Autoinmunidad , Linfocitos B Reguladores/inmunología , Diabetes Mellitus Tipo 1/inmunología , Animales , Linfocitos B Reguladores/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/sangre , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Ratones
3.
Pharmacol Res ; 182: 106320, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35738455

RESUMEN

In the last few years, a great interest has emerged in investigating the pleiotropic effects of Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs). While GLP-1RAs ability to lower plasma glucose and to induce weight loss has allowed them to be approved for the treatment of diabetes and obesity, consistent evidences from in vitro studies and preclinical models suggested that GLP-1RAs have anti-inflammatory properties and that may modulate the immune-system. Notably, such anti-inflammatory effects target different pathways in different tissues, underling the broad spectrum of GLP-1RAs actions. This review examines some of the currently proposed molecular mechanisms of GLP-1RAs actions and explores their potential benefits in reducing inflammatory responses, which may well suggest a future therapeutic use of GLP-1RAs in new indications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Hipoglucemiantes/uso terapéutico , Liraglutida/farmacología , Obesidad/tratamiento farmacológico
4.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838642

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Trasplante de Islotes Pancreáticos , Ratones Endogámicos C57BL , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Masculino , Trasplante de Corazón , Ratones Endogámicos BALB C , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Supervivencia de Injerto/inmunología
5.
Diabetes ; 72(11): 1641-1651, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625134

RESUMEN

Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and ß-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D.

6.
Adv Mater ; 35(40): e2300812, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357903

RESUMEN

Immune therapeutics holds great promise in the treatment of type 1 diabetes (T1D). Nonetheless, their progress is hampered by limited efficacy, equipoise, or issues of safety. To address this, a novel and specific nanodelivery platform for T1D that targets high endothelial venules (HEVs) presented in the pancreatic lymph nodes (PLNs) and pancreas is developed. Data indicate that the pancreata of nonobese diabetic (NOD) mice and patients with T1D are unique in their expression of newly formed HEVs. Anti-CD3 mAb is encapsulated in poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles (NPs), the surfaces of which are conjugated with MECA79 mAb that recognizes HEVs. Targeted delivery of these NPs improves accumulation of anti-CD3 mAb in both the PLNs and pancreata of NOD mice. Treatment of hyperglycemic NOD mice with MECA79-anti-CD3-NPs results in significant reversal of T1D compared to those that are untreated, treated with empty NPs, or provided free anti-CD3. This effect is associated with a significant reduction of T effector cell populations in the PLNs and a decreased production of pro-inflammatory cytokine in the mice treated with MECA79-anti-CD3-NPs. In summary, HEV-targeted therapeutics may be used as a means by which immune therapeutics can be delivered to PLNs and pancreata to suppress autoimmune diabetes effectively.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Ratones Endogámicos NOD , Páncreas
7.
Transplantation ; 106(3): 500-509, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34049364

RESUMEN

During the past years, solid allograft rejection has been considered the consequence of either cellular- or antibody-mediated reaction both being part of the adaptive immune response, whereas the role of innate immunity has been mostly considered less relevant. Recently, a large body of evidence suggested that the innate immune response and its soluble mediators may play a more important role during solid allograft rejection than originally thought. This review will highlight the role of novel soluble mediators that are involved in the activation of innate immunity during alloimmune response and solid allograft rejection. We will also discuss emerging strategies to alleviate the aforementioned events. Hence, novel, feasible, and safe clinical therapies are needed to prevent allograft loss in solid organ transplantation. Fully understanding the role of soluble mediators of innate immune system activation may help to mitigate solid allograft rejection and improve transplanted recipients' outcomes.


Asunto(s)
Rechazo de Injerto , Trasplante de Órganos , Aloinjertos , Rechazo de Injerto/prevención & control , Sistema Inmunológico , Inmunidad Innata , Trasplante de Órganos/efectos adversos , Trasplante Homólogo
8.
Diabetes ; 71(7): 1579-1590, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35499468

RESUMEN

Recent studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may induce metabolic distress, leading to hyperglycemia in patients affected by coronavirus disease 19 (COVID-19). We investigated the potential indirect and direct effects of SARS-CoV-2 on human pancreatic islets in 10 patients who became hyperglycemic after COVID-19. Although there was no evidence of peripheral anti-islet autoimmunity, the serum of these patients displayed toxicity on human pancreatic islets, which could be abrogated by the use of anti-interleukin-1ß (IL-1ß), anti-IL-6, and anti-tumor necrosis factor α, cytokines known to be highly upregulated during COVID-19. Interestingly, the receptors of those aforementioned cytokines were highly expressed on human pancreatic islets. An increase in peripheral unmethylated INS DNA, a marker of cell death, was evident in several patients with COVID-19. Pathology of the pancreas from deceased hyperglycemic patients who had COVID-19 revealed mild lymphocytic infiltration of pancreatic islets and pancreatic lymph nodes. Moreover, SARS-CoV-2-specific viral RNA, along with the presence of several immature insulin granules or proinsulin, was detected in postmortem pancreatic tissues, suggestive of ß-cell-altered proinsulin processing, as well as ß-cell degeneration and hyperstimulation. These data demonstrate that SARS-CoV-2 may negatively affect human pancreatic islet function and survival by creating inflammatory conditions, possibly with a direct tropism, which may in turn lead to metabolic abnormalities observed in patients with COVID-19.


Asunto(s)
COVID-19 , Islotes Pancreáticos , COVID-19/complicaciones , Citocinas/metabolismo , Humanos , Hiperglucemia/virología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/virología , Proinsulina/metabolismo , SARS-CoV-2
9.
Diabetes ; 71(8): 1800-1806, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551366

RESUMEN

Patients with type 1 diabetes (T1D) may develop severe outcomes during coronavirus disease 2019 (COVID-19), but their ability to generate an immune response against the SARS-CoV-2 mRNA vaccines remains to be established. We evaluated the safety, immunogenicity, and glycometabolic effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in patients with T1D. A total of 375 patients (326 with T1D and 49 subjects without diabetes) who received two doses of the SARS-CoV-2 mRNA vaccines (mRNA-1273, BNT162b2) between March and April 2021 at ASST Fatebenefratelli Sacco were included in this monocentric observational study. Local and systemic adverse events were reported in both groups after SARS-CoV-2 mRNA vaccination, without statistical differences between them. While both patients with T1D and subjects without diabetes exhibited a parallel increase in anti-SARS-CoV-2 spike titers after vaccination, the majority of patients with T1D (70% and 78%, respectively) did not show any increase in the SARS-CoV-2-specific cytotoxic response compared with the robust increase observed in all subjects without diabetes. A reduced secretion of the T-cell-related cytokines interleukin-2 and tumor necrosis factor-α in vaccinated patients with T1D was also observed. No glycometabolic alterations were evident in patients with T1D using continuous glucose monitoring during follow-up. Administration of the SARS-CoV-2 mRNA vaccine is associated with an impaired cellular SARS-CoV-2-specific cytotoxic immune response in patients with T1D.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Diabetes Mellitus Tipo 1 , Vacuna nCoV-2019 mRNA-1273/efectos adversos , Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Antivirales , Vacuna BNT162/efectos adversos , Vacuna BNT162/inmunología , Glucemia , Automonitorización de la Glucosa Sanguínea , COVID-19/prevención & control , Estudios de Cohortes , Diabetes Mellitus Tipo 1/inmunología , Humanos
10.
Front Immunol ; 12: 694118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305929

RESUMEN

Despite the increasing knowledge of pathophysiological mechanisms underlying the onset of type 1 diabetes (T1D), the quest for therapeutic options capable of delaying/reverting the diseases is still ongoing. Among all strategies currently tested in T1D, the use of hematopoietic stem cell (HSC)-based approaches and of teplizumab, showed the most encouraging results. Few clinical trials have already demonstrated the beneficial effects of HSCs in T1D, while the durability of the effect is yet to be established. Investigators are also trying to understand whether the use of selected and better-characterized HSCs subsets may provide more benefits with less risks. Interestingly, ex vivo manipulated HSCs showed promising results in murine models and the recent introduction of the humanized mouse models accelerated the translational potentials of such studies and their final road to clinic. Indeed, immunomodulatory as well as trafficking abilities can be enhanced in genetically modulated HSCs and genetically engineered HSCs may be viewed as a novel "biologic" therapy, to be further tested and explored in T1D and in other autoimmune/immune-related disorders.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Diabetes Mellitus Tipo 1/terapia , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Hipoglucemiantes/uso terapéutico , Animales , Anticuerpos Monoclonales Humanizados/efectos adversos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Humanos , Hipoglucemiantes/efectos adversos , Ratones , Fenotipo , Resultado del Tratamiento
11.
Cells ; 10(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34831209

RESUMEN

Nutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD. We demonstrate that impairment of DNMT1 enzymatic activity by NAD-promoted ADP-ribosylation leads to demethylation and transcriptional activation of the CEBPA gene, suggesting the existence of an unknown NAD-controlled region within the locus. In addition to the molecular events, NAD- treated cells exhibit significant morphological and phenotypical changes that correspond to myeloid differentiation. Collectively, these results delineate a novel role for NAD in cell differentiation, and indicate novel nutri-epigenetic strategies to regulate and control gene expression in human cells.


Asunto(s)
Diferenciación Celular , Metilación de ADN/genética , NAD/farmacología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Desmetilación del ADN/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Neoplasias/genética , Neoplasias/patología , Fosforilación Oxidativa/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos
12.
Metabolism ; 121: 154804, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34097917

RESUMEN

AIMS/HYPOTHESIS: Inflammation has a major role in diabetic kidney disease. We thus investigated the role of the IL-8-CXCR1/2 axis in favoring kidney damage in diabetes. METHODS: Urinary IL-8 levels were measured in 1247 patients of the Joslin Kidney Study in type 2 diabetes (T2D). The expression of IL-8 and of its membrane receptors CXCR1/CXCR2 was quantified in kidney tissues in patients with T2D and in controls. The effect of CXCR1/2 blockade on diabetic kidney disease was evaluated in db/db mice. RESULTS: IL-8 urinary levels were increased in patients with T2D and diabetic kidney disease, with the highest urinary IL-8 levels found in the patients with the largest decline in glomerular filtration rate, with an increased albumin/creatine ratio and the worst renal outcome. Moreover, glomerular IL-8 renal expression was increased in patients with T2D, as compared to controls. High glucose elicits abundant IL-8 secretion in cultured human immortalized podocytes in vitro. Finally, in diabetic db/db mice and in podocytes in vitro, CXCR1/2 blockade mitigated albuminuria, reduced mesangial expansion, decreased podocyte apoptosis and reduced DNA damage. CONCLUSIONS/INTERPRETATION: The IL-8- CXCR1/2 axis may have a role in diabetic kidney disease by inducing podocyte damage. Indeed, targeting the IL-8-CXCR1/2 axis may reduce the burden of diabetic kidney disease.


Asunto(s)
Nefropatías Diabéticas/genética , Interleucina-8/fisiología , Receptores CXCR/fisiología , Adulto , Animales , Estudios de Casos y Controles , Células Cultivadas , Estudios de Cohortes , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Italia , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Podocitos/metabolismo , Podocitos/patología , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Transducción de Señal/fisiología
13.
JCI Insight ; 6(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34784300

RESUMEN

A substantial proportion of patients who have recovered from coronavirus disease-2019 (COVID-19) experience COVID-19-related symptoms even months after hospital discharge. We extensively immunologically characterized patients who recovered from COVID-19. In these patients, T cells were exhausted, with increased PD-1+ T cells, as compared with healthy controls. Plasma levels of IL-1ß, IL-1RA, and IL-8, among others, were also increased in patients who recovered from COVID-19. This altered immunophenotype was mirrored by a reduced ex vivo T cell response to both nonspecific and specific stimulation, revealing a dysfunctional status of T cells, including a poor response to SARS-CoV-2 antigens. Altered levels of plasma soluble PD-L1, as well as of PD1 promoter methylation and PD1-targeting miR-15-5p, in CD8+ T cells were also observed, suggesting abnormal function of the PD-1/PD-L1 immune checkpoint axis. Notably, ex vivo blockade of PD-1 nearly normalized the aforementioned immunophenotype and restored T cell function, reverting the observed post-COVID-19 immune abnormalities; indeed, we also noted an increased T cell-mediated response to SARS-CoV-2 peptides. Finally, in a neutralization assay, PD-1 blockade did not alter the ability of T cells to neutralize SARS-CoV-2 spike pseudotyped lentivirus infection. Immune checkpoint blockade ameliorates post-COVID-19 immune abnormalities and stimulates an anti-SARS-CoV-2 immune response.


Asunto(s)
COVID-19/complicaciones , Citocinas/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/inmunología , SARS-CoV-2/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Antígeno B7-H1/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Estudios de Casos y Controles , Citocinas/efectos de los fármacos , Metilación de ADN , Femenino , Humanos , Inmunofenotipificación , Técnicas In Vitro , Proteína Antagonista del Receptor de Interleucina 1/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/inmunología , Interleucina-8/efectos de los fármacos , Interleucina-8/inmunología , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Regiones Promotoras Genéticas , Síndrome Post Agudo de COVID-19
14.
Nat Metab ; 3(6): 774-785, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34035524

RESUMEN

Patients with coronavirus disease 2019 (COVID-19) are reported to have a greater prevalence of hyperglycaemia. Cytokine release as a consequence of severe acute respiratory syndrome coronavirus 2 infection may precipitate the onset of metabolic alterations by affecting glucose homeostasis. Here we describe abnormalities in glycometabolic control, insulin resistance and beta cell function in patients with COVID-19 without any pre-existing history or diagnosis of diabetes, and document glycaemic abnormalities in recovered patients 2 months after onset of disease. In a cohort of 551 patients hospitalized for COVID-19 in Italy, we found that 46% of patients were hyperglycaemic, whereas 27% were normoglycaemic. Using clinical assays and continuous glucose monitoring in a subset of patients, we detected altered glycometabolic control, with insulin resistance and an abnormal cytokine profile, even in normoglycaemic patients. Glycaemic abnormalities can be detected for at least 2 months in patients who recovered from COVID-19. Our data demonstrate that COVID-19 is associated with aberrant glycometabolic control, which can persist even after recovery, suggesting that further investigation of metabolic abnormalities in the context of long COVID is warranted.


Asunto(s)
Glucemia/metabolismo , COVID-19/sangre , Hiperglucemia/metabolismo , COVID-19/complicaciones , COVID-19/virología , Estudios de Cohortes , Humanos , Hiperglucemia/complicaciones , Resistencia a la Insulina , Células Secretoras de Insulina/patología , SARS-CoV-2/aislamiento & purificación
15.
Expert Opin Biol Ther ; 20(8): 887-897, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32299257

RESUMEN

INTRODUCTION: Type 1 diabetes (T1D) is a lifelong condition resulting from autoimmune destruction of insulin-producing ß-cells. Islet or whole-pancreas transplantation is limited by the shortage of donors and need for chronic immune suppression. Novel strategies are needed to prevent ß-cell loss and to rescue production of endogenous insulin. AREAS COVERED: This review covers the latest advances in cell-based therapies for the treatment and prevention of T1D. Topics include adoptive transfer of cells with increased immunoregulatory potential for ß-cell protection, and ß-cell replacement strategies such as generation of insulin-producing ß-like cells from unlimited sources. EXPERT OPINION: Cell therapy provides an opportunity to prevent or reverse T1D. Adoptive transfer of autologous cells having enhanced immunomodulatory properties can suppress autoimmunity and preserve ß-cells. Such therapies have been made possible by a combination of genome-editing techniques and transplantation of tolerogenic cells. In-vitro modified autologous hematopoietic stem cells and tolerogenic dendritic cells may protect endogenous and newly generated ß-cells from a patient's autoimmune response without hampering immune surveillance for infectious agents and malignant cellular transformations. However, methods to generate cells that meet quality and safety standards for clinical applications require further refinement.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Diabetes Mellitus Tipo 1/terapia , Animales , Diferenciación Celular , Diabetes Mellitus Tipo 1/patología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/trasplante
16.
Artículo en Inglés | MEDLINE | ID: mdl-33188009

RESUMEN

INTRODUCTION: Gestational diabetes mellitus (GDM) is the most frequent metabolic complication during pregnancy and is associated with development of short-term and long-term complications for newborns, with large-for-gestational-age (LGA) being particularly common. Interestingly, the mechanism behind altered fetal growth in GDM is only partially understood. RESEARCH DESIGN AND METHODS: A proteomic approach was used to analyze placental samples obtained from healthy pregnant women (n=5), patients with GDM (n=12) and with GDM and LGA (n=5). Effects of altered proteins on fetal development were tested in vitro in human embryonic stem cells (hESCs). RESULTS: Here, we demonstrate that the placental proteome is altered in pregnant women affected by GDM with LGA, with at least 37 proteins differentially expressed to a higher degree (p<0.05) as compared with those with GDM but without LGA. Among these proteins, 10 are involved in regulating tissue differentiation and/or fetal growth and development, with bone marrow proteoglycan (PRG2) and dipeptidyl peptidase-4 (DPP-4) being highly expressed. Both PRG2 and DPP-4 altered the transcriptome profile of stem cells differentiation markers when tested in vitro in hESCs, suggesting a potential role in the onset of fetal abnormalities. CONCLUSIONS: Our findings suggest that placental dysfunction may be directly responsible for abnormal fetal growth/development during GDM. Once established on a larger population, inhibitors of the pathways involving those altered factors may be tested in conditions such as GDM and LGA, in which therapeutic approaches are still lacking.


Asunto(s)
Diabetes Gestacional , Macrosomía Fetal , Proteoma , Cesárea , Femenino , Macrosomía Fetal/genética , Humanos , Recién Nacido , Embarazo , Proteoma/genética , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA