Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RNA ; 25(10): 1274-1290, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31315914

RESUMEN

In the present work, 67 crystal structures of the aptamer domains of RNA riboswitches are chosen for analysis of the structure and strength of hydrogen bonding (pairing) interactions between nucleobases constituting the aptamer binding pockets and the bound ligands. A total of 80 unique base:ligand hydrogen-bonded pairs containing at least two hydrogen bonds were identified through visual inspection. Classification of these contacts in terms of the interacting edge of the aptamer nucleobase revealed that interactions involving the Watson-Crick edge are the most common, followed by the sugar edge of purines and the Hoogsteen edge of uracil. Alternatively, classification in terms of the chemical constitution of the ligand yields five unique classes of base:ligand pairs: base:base, base:amino acid, base:sugar, base:phosphate, and base:other. Further, quantum mechanical (QM) geometry optimizations revealed that 67 out of 80 pairs exhibit stable geometries and optimal deviations from their macromolecular crystal occurrences. This indicates that these contacts are well-defined RNA aptamer:ligand interaction motifs. QM calculated interaction energies of base:ligand pairs reveal a rich hydrogen bonding landscape, ranging from weak interactions (base:other, -3 kcal/mol) to strong (base:phosphate, -48 kcal/mol) contacts. The analysis was further extended to study the biological importance of base:ligand interactions in the binding pocket of the tetrahydrofolate riboswitch and thiamine pyrophosphate riboswitch. Overall, our study helps in understanding the structural and energetic features of base:ligand pairs in riboswitches, which could aid in developing meaningful hypotheses in the context of RNA:ligand recognition. This can, in turn, contribute toward current efforts to develop antimicrobials that target RNAs.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Emparejamiento Base , Conformación de Ácido Nucleico , Riboswitch , Aptámeros de Nucleótidos/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Termodinámica
2.
RNA ; 23(6): 847-859, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28341704

RESUMEN

Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA.


Asunto(s)
Emparejamiento Base , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN/química , ARN/genética , Enlace de Hidrógeno , Metilación , Modelos Moleculares , ARN de Transferencia/química , ARN de Transferencia/genética , Ribosomas/química , Ribosomas/metabolismo , Relación Estructura-Actividad
3.
ACS Omega ; 4(4): 7354-7368, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459834

RESUMEN

Noncoding RNA molecules are composed of a large variety of noncanonical base pairs that shape up their functionally competent folded structures. Each base pair is composed of at least two interbase hydrogen bonds (H-bonds). It is expected that the characteristic geometry and stability of different noncanonical base pairs are determined collectively by the properties of these interbase H-bonds. We have studied the ground-state electronic properties [using density functional theory (DFT) and DFT-D3-based methods] of all the 118 normal base pairs and 36 modified base pairs, belonging to 12 different geometric families (cis and trans of WW, WH, HH, WS, HS, and SS) that occur in a nonredundant set of high-resolution RNA crystal structures. Having addressed some of the limitations of the earlier approaches, we provide here a comprehensive compilation of the average energies of different types of interbase H-bonds (E HB). We have also characterized each interbase H-bond using 13 different parameters that describe its geometry, charge distribution at its bond critical point (BCP), and n → σ*-type charge transfer from filled π orbitals of the H-bond acceptor to the empty antibonding orbital of the H-bond donor. On the basis of the extent of their linear correlation with the H-bonding energy, we have shortlisted five parameters to model linear equations for predicting E HB values. They are (i) electron density at the BCP: ρ, (ii) its Laplacian: ∇2ρ, (iii) stabilization energy due to n → σ*-type charge transfer: E(2), (iv) donor-hydrogen distance, and (v) hydrogen-acceptor distance. We have performed single variable and multivariable linear regression analysis over the normal base pairs and have modeled sets of linear relationships between these five parameters and E HB. Performance testing of our model over the set of modified base pairs shows promising results, at least for the moderately strong H-bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA