Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunity ; 51(1): 185-197.e6, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31278058

RESUMEN

Innate lymphoid cells (ILCs) promote tissue homeostasis and immune defense but also contribute to inflammatory diseases. ILCs exhibit phenotypic and functional plasticity in response to environmental stimuli, yet the transcriptional regulatory networks (TRNs) that control ILC function are largely unknown. Here, we integrate gene expression and chromatin accessibility data to infer regulatory interactions between transcription factors (TFs) and genes within intestinal type 1, 2, and 3 ILC subsets. We predicted the "core" TFs driving ILC identities, organized TFs into cooperative modules controlling distinct gene programs, and validated roles for c-MAF and BCL6 as regulators affecting type 1 and type 3 ILC lineages. The ILC network revealed alternative-lineage-gene repression, a mechanism that may contribute to reported plasticity between ILC subsets. By connecting TFs to genes, the TRNs suggest means to selectively regulate ILC effector functions, while our network approach is broadly applicable to identifying regulators in other in vivo cell populations.


Asunto(s)
Intestinos/fisiología , Subgrupos Linfocitarios/fisiología , Linfocitos/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Plasticidad de la Célula , Ensamble y Desensamble de Cromatina , Represión Epigenética , Redes Reguladoras de Genes , Inmunidad Innata , Inmunomodulación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-maf/genética , Transcriptoma
2.
Cytotherapy ; 23(1): 37-45, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33092988

RESUMEN

BACKGROUND AIMS: Certain therapies (e.g., daclizumab) that promote expansion of natural killer (NK) cells are associated with clinical amelioration of disease in the context of multiple sclerosis and associated mouse models. The clinical benefits are putatively attributable to an enhanced capacity of NK cells to kill activated pathogenic T cells. Whether a parallel approach will also be effective in systemic lupus erythematosus (lupus), a multi-organ autoimmune disease driven by aberrant responses of self-reactive T and B cells, is unclear. METHODS: In the present study, the authors assess the therapeutic impact of IL-2- and IL-15-based strategies for expanding NK cells on measures of lupus-like disease in a mouse model. RESULTS: Unexpectedly, cytokine-mediated expansion of cytotoxic lymphocytes aggravated immunological measures of lupus-like disease. Depletion studies revealed that the negative effects of these cytokine-based regimens can largely be attributed to expansion of CD8 T cells rather than NK cells. CONCLUSIONS: These results provoke caution in the use of cytokine-based therapeutics to treat co-morbid cancers in patients with lupus and highlight the need for new methods to selectively expand NK cells to further assess their clinical value in autoimmune disease.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Inmunomodulación , Interleucina-15/farmacología , Interleucina-2/farmacología , Células Asesinas Naturales/efectos de los fármacos , Lupus Eritematoso Sistémico/terapia , Animales , Linfocitos T CD8-positivos/inmunología , Humanos , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Masculino , Ratones
3.
Res Sq ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257976

RESUMEN

Natural killer (NK) cells suppress cellular and humoral immune responses via killing of T cells, resulting in diminished vaccine responses in mice and humans. Efforts to overcome this roadblock and achieve optimal immunity require an improved understanding of the molecular mediators facilitating NK cell-targeting of discrete subsets of CD4 T cells. We employed single-cell forensic victimology and CRISPR-Cas9 editing to delineate a transcriptional program uniquely responsible for the susceptibility of a subpopulation of CD4 T cells to perforin-dependent immunoregulation by NK cells. The unique vulnerability of these CD4 T cells relative to other subsets of CD4 T cells was not associated with a pattern of NK-cell-receptor ligand expression that would favor activation of NK cells. Instead, susceptible CD4 T cells were skewed toward follicular helper T cell (Tfh) differentiation and exhibited intermediate expression of Klf2 and a related suite of KLF2-target genes (e.g. S1pr1) involved in cell migration and spatial positioning. NK-cell dependent suppression of the subset of Tfh exhibiting intermediate expression of KLF2 and S1PR1 was confirmed with single-cell proteomics. CRISPR targeting of KLF2 in CD4 T cells prevented suppression by NK cells. Thus, KLF2 regulation of spatial positioning of T cells is a key determinant of NK-cell immunoregulatory function and a possible target for strategies to enhance vaccine efficacy.

4.
Sci Immunol ; 9(92): eadd3085, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335270

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic comorbidities remain ill-defined. Here, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aeroallergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed coincident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine tumor necrosis factor-α. These observations provide important insights into a potential mechanism underlying the development of allergic comorbidity in early life in children with AD, which involves altered NK cell functional responses, and define an endotype of severe AD.


Asunto(s)
Asma , Dermatitis Atópica , Hipersensibilidad a los Alimentos , Niño , Preescolar , Humanos , Alérgenos , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Hipersensibilidad a los Alimentos/complicaciones , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK
5.
medRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333102

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic co-morbidities remain ill-defined. Herein, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aero allergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed co-incident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine TNF-α. These observations provide important insights into a potential mechanism underlying the development of allergic co-morbidity in early life in children with AD which involves altered NK-cell functional responses, and define an endotype of severe AD.

6.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34314390

RESUMEN

NK cell suppression of T cells is a key determinant of viral pathogenesis and vaccine efficacy. This process involves perforin-dependent elimination of activated CD4+ T cells during the first 3 days of infection. Although this mechanism requires cell-cell contact, NK cells and T cells typically reside in different compartments of lymphoid tissues at steady state. Here, we showed that NK cell suppression of T cells is associated with transient accumulation of NK cells within T cell-rich sites of the spleen during lymphocytic choriomeningitis virus infection. The chemokine receptor CXCR3 was required for this relocation and suppression of antiviral T cells. Accordingly, NK cell migration was mediated by type I IFN-dependent promotion of CXCR3 ligand expression. In contrast, adenoviral vectors that weakly induced type I IFN and did not stimulate NK cell inhibition of T cells also did not promote measurable redistribution of NK cells to T cell zones. Exogenous IFN rescued NK cell migration during adenoviral vector immunization. Thus, type I IFN and CXCR3 were critical for properly positioning NK cells to constrain antiviral T cell responses. Development of strategies to curtail migration of NK cells between lymphoid compartments may enhance vaccine-elicited immune responses.


Asunto(s)
Células Asesinas Naturales/inmunología , Tejido Linfoide/inmunología , Receptores CXCR3/metabolismo , Animales , Movimiento Celular/inmunología , Interacciones Microbiota-Huesped/inmunología , Tolerancia Inmunológica , Inmunidad Innata , Activación de Linfocitos , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA