Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Microbiologyopen ; 12(2): e1348, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37186229

RESUMEN

The dental clinic air microbiome incorporates microbes from the oral cavity and upper respiratory tract (URT). This study aimed to establish a reliable methodology for air sampling in a dental clinic setting and quantify the abundance of culturable mesophilic aerobic bacteria present in these samples using regression modeling. Staphylococcus hominis, a potentially pathogenic bacterium typically found in the human oropharynx and URT, was consistently isolated. S. hominis was the most abundant species of aerobic bacteria (22%-24%) and comprised 60%-80% of all Staphylococcus spp. The study also assessed the susceptibility of S. hominis to 222 nm-far-UVC light in laboratory experiments, which showed an exponential surface inactivation constant of k = 0.475 cm2 /mJ. This constant is a critical parameter for future on-site use of far-UVC light as a technique for reducing pathogenic bacterial load in dental clinics.


Asunto(s)
Staphylococcus hominis , Rayos Ultravioleta , Humanos , Clínicas Odontológicas , Staphylococcus
2.
Nat Biotechnol ; 41(12): 1820-1828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36928429

RESUMEN

Sequencing-based approaches for the analysis of microbial communities are susceptible to contamination, which could mask biological signals or generate artifactual ones. Methods for in silico decontamination using controls are routinely used, but do not make optimal use of information shared across samples and cannot handle taxa that only partially originate in contamination or leakage of biological material into controls. Here we present Source tracking for Contamination Removal in microBiomes (SCRuB), a probabilistic in silico decontamination method that incorporates shared information across multiple samples and controls to precisely identify and remove contamination. We validate the accuracy of SCRuB in multiple data-driven simulations and experiments, including induced contamination, and demonstrate that it outperforms state-of-the-art methods by an average of 15-20 times. We showcase the robustness of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, most notably the prediction of treatment response in melanoma patients using decontaminated tumor microbiome data.


Asunto(s)
Microbiota , Neoplasias , Humanos , Microbiota/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA