Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Plant Biol ; 19(1): 447, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651253

RESUMEN

BACKGROUND: MicroRNA-mediated gene regulatory networks play a significant role in plant growth and development and environmental stress responses. RESULTS: We identified 79 microRNAs (miRNAs) and multiple miRNA variants (isomiRs) belonging to 26 miRNA families in the primary root growth zone of maize seedlings grown at one of three water potentials: well-watered (- 0.02 MPa), mild water deficit stress (- 0.3 MPa), and severe water deficit stress (- 1.6 MPa). The abundances of 3 miRNAs (mild stress) and 34 miRNAs representing 17 families (severe stress) were significantly different in water-deficit stressed relative to well-watered controls (FDR < 0.05 and validated by stem loop RT-qPCR). Degradome sequencing revealed 213 miRNA-regulated transcripts and trancriptome profiling revealed that the abundance of 77 (miRNA-regulated) were regulated by water-defecit stress. miR399e,i,j-3p was strongly regulated by water-defcit stress implicating the possibility of nutrient deficiency during stress. CONCLUSIONS: We have identified a number of maize miRNAs that respond to specific water deficits applied to the primary root growth zone. We have also identified transcripts that are targets for miRNA regulation in the root growth zone under water-deficit stress. The miR399e,i,j-3p that is known to regulate phosphate uptake in response to nutrient deficiencies responds to water-deficit stress, however, at the seedling stage the seed provides adequate nutrients for root growth thus miR399e,i,j-3p may play a separate role in water-deficit responses. A water-deficit regulated maize transcript, similar to known miR399 target mimics, was identified and we hypothesized that it is another regulatory player, moderating the role of miR399e,i,j-3p, in primary root growth zone water deficit responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , MicroARNs/genética , Agua/fisiología , Zea mays/genética , Sequías , Raíces de Plantas/genética , Raíces de Plantas/fisiología , ARN de Planta/genética , Estrés Fisiológico , Zea mays/fisiología
2.
Physiol Plant ; 167(3): 317-329, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30525218

RESUMEN

The moss Physcomitrella patens has been used as a model organism to study the induction of desiccation tolerance (DT), but links between dehydration rate, the accumulation of endogenous abscisic acid (ABA) and DT remain unclear. In this study, we show that prolonged acclimation of P. patens at 89% relative humidity (RH) [-16 MPa] can induce tolerance of desiccation at 33% RH (-153 MPa) in both protonema and gametophore stages. During acclimation, significant endogenous ABA accumulation occurred after 1 day in gametophores and after 2 days in protonemata. Physcomitrella patens expressing the ABA-inducible EARLY METHIONINE promoter fused to a cyan fluorescent protein (CFP) reporter gene revealed a mostly uniform distribution of the CFP increasing throughout the tissues during acclimation. DT was measured by day 6 of acclimation in gametophores, but not until 9 days of acclimation for protonemata. These results suggest that endogenous ABA accumulating when moss cells experience moderate water loss requires sufficient time to induce the changes that permit cells to survive more severe desiccation. These results provide insight for ongoing studies of how acclimation induces metabolic changes to enable DT in P. patens.


Asunto(s)
Ácido Abscísico/metabolismo , Bryopsida/metabolismo , Desecación , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
3.
BMC Genet ; 19(1): 100, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400815

RESUMEN

BACKGROUND: Identifying genetic variations that shape important complex traits is fundamental to the genetic improvement of important forest tree species, such as loblolly pine (Pinus taeda L.), which is one of the most commonly planted forest tree species in the southern U.S. Gene transcripts and metabolites are important regulatory intermediates that link genetic variations to higher-order complex traits such as wood development and drought response. A few prior studies have associated intermediate phenotypes including mRNA expression and metabolite levels with a limited number of molecular markers, but the identification of genetic variations that regulate intermediate phenotypes needs further investigation. RESULTS: We identified 1841 single nucleotide polymorphisms (SNPs) associated with 191 gene expression mRNA phenotypes and 524 SNPs associated with 53 metabolite level phenotypes using 2.8 million exome-derived SNPs. The identified SNPs reside in genes with a wide variety of functions. We further integrated the identified SNPs and the associated expressed genes and metabolites into networks. We described the SNP-SNP interactions that significantly impacted the gene transcript abundance and metabolite level in the networks. Key loci and genes in the wood development and drought response networks were identified and analyzed. CONCLUSIONS: This work provides new candidate genes for research on the genetic basis of gene expression and metabolism linked to wood development and drought response in loblolly pine and highlights the efficiency of using association-mapping-based networks to discover candidate genes with important roles in complex biological processes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Pinus taeda/genética , Sequías , Redes Reguladoras de Genes , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Pinus taeda/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Cell Environ ; 40(5): 686-701, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28039925

RESUMEN

Plants tolerate water deficits by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TF)-directed regulation of transcription within these gene networks is key to eliciting appropriate responses. In this study, reverse transcription quantitative PCR (RT-qPCR) was used to examine the abundance of 618 transcripts from 536 TF genes in individual root and shoot tissues of maize seedlings grown in vermiculite under well-watered (water potential of -0.02 MPa) and water-deficit conditions (water potentials of -0.3 and -1.6 MPa). A linear mixed model identified 433 TF transcripts representing 392 genes that differed significantly in abundance in at least one treatment, including TFs that intersect growth and development and environmental stress responses. TFs were extensively differentially regulated across stressed maize seedling tissues. Hierarchical clustering revealed TFs with stress-induced increased abundance in primary root tips that likely regulate root growth responses to water deficits, possibly as part of abscisic acid and/or auxin-dependent signaling pathways. Ten of these TFs were selected for validation in nodal root tips of drought-stressed field-grown plants (late V1 to early V2 stage). Changes in abundance of these TF transcripts under a field drought were similar to those observed in the seedling system.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantones/genética , Factores de Transcripción/genética , Agua/metabolismo , Zea mays/genética , Análisis por Conglomerados , Sequías , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Zea mays/crecimiento & desarrollo
5.
BMC Genomics ; 14: 618, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24034668

RESUMEN

BACKGROUND: The ParS/ParR two component regulatory system plays critical roles for multidrug resistance in Pseudomonas aeruginosa. It was demonstrated that in the presence of antimicrobials, ParR enhances bacterial survival by distinct mechanisms including activation of the mexXY efflux genes, enhancement of lipopolysaccharide modification through the arn operon, and reduction of the expression of oprD porin. RESULTS: In this study, we report on transcriptomic analyses of P. aeruginosa PAO1 wild type and parS and parR mutants growing in a defined minimal medium. Our transcriptomic analysis provides the first estimates of transcript abundance for the 5570 coding genes in P. aeruginosa PAO1. Comparative transcriptomics of P. aeruginosa PAO1 and par mutants identified a total of 464 genes regulated by ParS and ParR. Results also showed that mutations in the parS/parR system abolished expression of the mexEF-oprN operon by down-regulating the regulatory gene mexS. In addition to the known effects on drug resistance genes, transcript abundances of the quorum sensing genes (rhlIR and pqsABCDE-phnAB) were higher in both parS and parR mutants. In accordance with these results, a significant portion of the ParS/ParR regulated genes belonged to the MexEF-OprN and quorum sensing regulons. Deletion of the par genes also led to increased phenazine production and swarming motility, consistent with the up-regulation of the phenazine and rhamnolipid biosynthetic genes, respectively. CONCLUSION: Our results link the ParS/ParR two component signal transduction system to MexEF-OprN and quorum sensing systems in P. aeruginosa. These results expand our understanding of the roles of the ParS/ParR system in the regulation of gene expression in P. aeruginosa, especially in the absence of antimicrobials.


Asunto(s)
Pseudomonas aeruginosa/genética , Percepción de Quorum/genética , Transcriptoma , Virulencia/genética , ADN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Operón , Pseudomonas aeruginosa/patogenicidad , Análisis de Secuencia de ADN , Transducción de Señal
6.
Pest Manag Sci ; 78(8): 3528-3533, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35578562

RESUMEN

BACKGROUND: RNA interference (RNAi) is a promising new approach for controlling insect pests without the use of synthetic pesticides. Trunk injection is a delivery system for woody plants that harnesses the vascular system of the tree to transport materials to the tree canopy. Full size apple trees were injected with double-stranded RNA (dsRNA), and season-long leaf samples were taken to measure the vascular mobility and temporal persistence of dsRNA, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: The qRT-PCR results revealed that the quantities of dsRNA in the apple leaves of treated trees were significantly greater than those in the leaves of untreated trees for both 2019 and 2020 studies. The peak dsRNA concentration in 2019 was 242 pg/30 mg of leaf tissue, and in 2020 was 16.4 pg/30 mg. The persistence of dsRNA in the apple tree canopy in 2019 was at least 84 days, and in 2020 was at least 141 days. CONCLUSIONS: The highest mean measurement of dsRNA on a single date in 2019 was 242 pg, which is approximately equivalent to 8 ng/1 g leaf tissue. The projection using the highest replicate concentration from the same date is approximately equivalent to 27 ng/1 g leaf tissue, which may be sufficient to be considered biologically active. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Malus , ARN Bicatenario , Animales , Control de Insectos/métodos , Insectos/genética , Interferencia de ARN , ARN Bicatenario/genética
7.
Microbiologyopen ; 2(3): 505-24, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23606419

RESUMEN

The GacS/GacA two-component regulatory system activates the production of secondary metabolites including phenazines crucial for biological control activity in Pseudomonas chlororaphis 30-84. To better understand the role of the Gac system on phenazine regulation, transcriptomic analyses were conducted by comparing the wild-type strain to a gacA mutant. RNA-seq analysis identified 771 genes under GacA control, including many novel genes. Consistent with previous findings, phenazine biosynthetic genes were significantly downregulated in a gacA mutant. The transcript abundances of phenazine regulatory genes such as phzI, phzR, iopA, iopB, rpoS, and pip also were reduced. Moreover, the transcript abundance of three noncoding RNAs (ncRNAs) including rsmX, rsmY, and rsmZ was significantly decreased by gacA mutation consistent with the presence of consensus GacA-binding sites associated with their promoters. Our results also demonstrated that constitutive expression of rsmZ from a non-gac regulated promoter resulted in complete restoration of N-acyl-homoserine lactone (AHL) and phenazine production as well as the expression of other gac-dependent secondary metabolites in gac mutants. The role of RsmA and RsmE in phenazine production also was investigated. Overexpression of rsmE, but not rsmA, resulted in decreased AHL and phenazine production in P. chlororaphis, and only a mutation in rsmE bypassed the requirement for GacA in phenazine gene expression. In contrast, constitutive expression of the phzI/phzR quorum sensing system did not rescue phenazine production in the gacA mutant, indicating the direct posttranscriptional control by Gac on the phenazine biosynthetic genes. On the basis of these results, we propose a model to illustrate the hierarchic role of phenazine regulators modulated by Gac in the control of phenazine production. The transcriptomic analysis also was used to identify additional genes regulated by GacA that may contribute to the biological control capability of strain 30-84.


Asunto(s)
Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica , Fenazinas/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Factores de Transcripción/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Factores de Transcripción/genética
8.
Tree Physiol ; 33(7): 763-74, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23933831

RESUMEN

Variation in the expression of genes with putative roles in wood development was associated with single-nucleotide polymorphisms (SNPs) using a population of loblolly pine (Pinus taeda L.) that included individuals from much of the native range. Association studies were performed using 3938 SNPs and expression data obtained using quantitative real-time polymerase chain reaction (PCR) (qRT-PCR) for 106 xylem development genes in 400 clonally replicated loblolly pine individuals. A general linear model (GLM) approach, which takes the underlying population structure into consideration, was used to discover significant associations. After adjustment for multiple testing using a false discovery rate correction, 88 statistically significant associations (Q<0.05) were observed for 80 SNPs with the expression data of 33 xylem development genes. Thirty SNPs caused nonsynonymous mutations, 18 resulted in synonymous mutations, 11 were in 3' untranslated regions (UTRs), 1 was in a 5' UTR and 20 were in introns. Using AraNet, we found that Arabidopsis genes with high similarity to the loblolly pine genes involved in 21 of the 88 statistically significant associations are connected in functional gene networks. Comparisons of gene expression values revealed that in most cases the average expression in plants homozygous for the rare SNP allele was lower than that of plants that were heterozygous or homozygous for the abundant allele. Although there are association studies of SNPs and expression profiles for humans, Arabidopsis and white spruce, to the best of our knowledge, this is the first example of such an association genetic study in pines. Functional validation of these associations will lead to a deeper understanding of the molecular basis of phenotypic differences in wood development among individuals in conifer populations.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus taeda/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Xilema/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Fenotipo , Pinus taeda/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Madera/genética , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA