Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chemphyschem ; 25(10): e202400065, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38406969

RESUMEN

Introducing chirality into soft materials, including liquid crystals (LCs), profoundly impacts their self-organization and physical properties. In this study, we synthesized a novel series of LC dimers with a chiral center as part of their flexible spacer. The dimers were prepared in racemic and enantiomerically pure forms. Their spacer length and parity were varied to investigate the effect of spacer chirality and parity on mesomorphic behavior and on chiral induction in the nematic phase of achiral mesogens. Our results show that the even-membered chiral dimers only have chiral nematic phases. In contrast, the odd-membered dimers display rich mesomorphism, including the intriguing blue phase (BP) and chiral form of the twist-bend nematic phase (N*TB). The observed significant difference in the 3D surface morphology between the racemic and chiral forms of the N*TB phase suggests that the chiral moiety in the spacer promotes a chiral hierarchy. Furthermore, the chiral dimers show a prominent odd-even effect in the helical twisting power in nematic hosts. These findings highlight the importance of the position of the chiral group within the dimeric molecule and provide new insights into how intrinsic chirality in the spacer affects the overall structural chirality.

2.
J Lipid Res ; 64(10): 100430, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37611869

RESUMEN

Products of lipid peroxidation induce detrimental structural changes in cell membranes, such as the formation of water pores, which occur in the presence of lipids with partially oxidized chains. However, the influence of another class of products, dicarboxylic acids, is still unclear. These products have greater mobility in the lipid bilayer, which enables their aggregation and the formation of favorable sites for the appearance of pores. Therefore, dodecanedioic acid (DDA) was selected as a model product. Additionally, the influence of several structurally different flavonoids on DDA aggregation via formation of hydrogen bonds with carboxyl groups was investigated. The molecular dynamics of DDA in DOPC lipid bilayer revealed the formation of aggregates extending over the hydrophobic region of the bilayer and increasing its polarity. Consequently, water penetration and the appearance of water wires was observed, representing a new step in the mechanism of pore formation. Furthermore, DDA molecules were found to interact with lipid polar groups, causing them to be buried in the bilayer. The addition of flavonoids to the system disrupted aggregate formation, resulting in the displacement of DDA molecules from the center of the bilayer. The placement of DDA and flavonoids in the lipid bilayer was confirmed by small-angle X-ray scattering. Atomic force microscopy and electron paramagnetic resonance were used to characterize the structural properties. The presence of DDA increased bilayer roughness and decreased the ordering of lipid chains, confirming its detrimental effects on the membrane surface, while flavonoids were found to reduce or reverse these changes.

3.
Mol Pharm ; 20(10): 5148-5159, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37651612

RESUMEN

Flavonoids are naturally occurring antioxidants that have been shown to protect cell membranes from oxidative stress and have a potential use in photodynamic cancer treatment. However, they degrade at physiological pH values, which is often neglected in drug release studies. Kinetic study of flavonoid oxidation can help to understand the mechanism of degradation and to correctly analyze flavonoid release data. Additionally, the incorporation of flavonoids into magnetic nanocarriers can be utilized to mitigate degradation and overcome their low solubility, while the release can be controlled using magnetic fields (MFs). An approach that combines alternating least squares (ALS) and multilinear regression to consider flavonoid autoxidation in release studies is presented. This approach can be used in general cases to account for the degradation of unstable drugs released from nanoparticles. The oxidation of quercetin, myricetin (MCE), and myricitrin (MCI) was studied in PBS buffer (pH = 7.4) using UV-vis spectrophotometry. ALS was used to determine the kinetic profiles and characteristic spectra, which were used to analyze UV-vis data of release from functionalized magnetic nanoparticles (MNPs). MNPs were selected for their unique magnetic properties, which can be exploited for both targeted drug delivery and control over the drug release. MNPs were prepared and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, superconducting quantum interference device magnetometer, and electrophoretic mobility measurements. Autoxidation of all three flavonoids follows a two-step first-order kinetic model. MCE showed the fastest degradation, while the oxidation of MCI was the slowest. The flavonoids were successfully loaded into the prepared MNPs, and the drug release was described by the first-order and Korsmeyer-Peppas models. External MFs were utilized to control the release mechanism and the cumulative mass of the flavonoids released.

4.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077392

RESUMEN

Biomass fly ash (BFA) from a biomass cogeneration plant was encapsulated into calcium alginate microspheres (ALG/Ca) and characterized. An FTIR analysis indicated that BFA loading weakened molecular interactions between ALG/Ca constituents (mainly hydrogen bonding and electrostatic interactions), thus changing the crosslinking density. SEM and AFM analyses revealed a wrinkled and rough surface with elongated and distorted granules. The in vitro release of BFA's main components (K, Ca, and Mg) was controlled by diffusion through the gel-like matrix, but the kinetics and released amounts differed significantly. The smaller released amounts and slower release rates of Ca and Mg compared to K resulted from the differences in the solubility of their minerals as well as from the interactions of divalent cations with alginate chains. The physicochemical properties of the novel microsphere formulation reveal significant potential for the prolonged delivery of nutrients to crops in a safe manner.


Asunto(s)
Alginatos , Ceniza del Carbón , Alginatos/química , Biomasa , Microesferas , Suelo/química
5.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800824

RESUMEN

A new copper complex, trans-diaqua-trans-bis [1-hydroxy-1,2-di (methoxycarbonyl) ethenato] copper (abbreviation Cu(II) complex), was synthesized and its plant growth regulation properties were investigated. The results show a sharp dependence of growth regulation activity of the Cu(II) complex on the type of culture and its concentration. New plant growth regulator accelerated the development of the corn root system (the increase in both length and weight) but showed a smaller effect on the development of the wheat and barley root systems. Stimulation of corn growth decreased with increasing Cu(II) complex concentration from 0.0001% to 0.01% (inhibition at high concentrations-0.01%). The development of corn stems was also accelerated but to a lesser extent. Chitosan-coated calcium alginate microcapsules suitable for delivery of Cu(II) complex to plants were prepared and characterized. Analysis of the FTIR spectrum showed that complex molecular interactions between functional groups of microcapsule constituents include mainly electrostatic interactions and hydrogen bonds. Microcapsules surface exhibits a soft granular surface structure with substructures consisting of abundant smaller particles with reduced surface roughness. Release profile analysis showed Fickian diffusion is the rate-controlling mechanism of Cu(II) complex releasing. The obtained results give new insights into the complexity of the interaction between the Cu(II) complex and microcapsule formulation constituents, which can be of great help in accelerating product development for the application in agriculture.


Asunto(s)
Alginatos/administración & dosificación , Quitosano/administración & dosificación , Portadores de Fármacos/administración & dosificación , Composición de Medicamentos/métodos , Reguladores del Crecimiento de las Plantas/síntesis química , Rastreo Diferencial de Calorimetría , Cápsulas , Difusión , Portadores de Fármacos/química , Germinación/efectos de los fármacos , Enlace de Hidrógeno , Microscopía Electrónica de Rastreo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Propiedades de Superficie
6.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562817

RESUMEN

Oxidative stress (OS) induced by the disturbed homeostasis of metal ions is one of the pivotal factors contributing to neurodegeneration. The aim of the present study was to investigate the effects of flavonoid myricetin on copper-induced toxicity in neuroblastoma SH-SY5Y cells. As determined by the MTT method, trypan blue exclusion assay and measurement of ATP production, myricetin heightened the toxic effects of copper and exacerbated cell death. It also increased copper-induced generation of reactive oxygen species, indicating the prooxidative nature of its action. Furthermore, myricetin provoked chromatin condensation and loss of membrane integrity without caspase-3 activation, suggesting the activation of both caspase-independent programmed cell death and necrosis. At the protein level, myricetin-induced upregulation of PARP-1 and decreased expression of Bcl-2, whereas copper-induced changes in the expression of p53, p73, Bax and NME1 were not further affected by myricetin. Inhibitors of ERK1/2 and JNK kinases, protein kinase A and L-type calcium channels exacerbated the toxic effects of myricetin, indicating the involvement of intracellular signaling pathways in cell death. We also employed atomic force microscopy (AFM) to evaluate the morphological and mechanical properties of SH-SY5Y cells at the nanoscale. Consistent with the cellular and molecular methods, this biophysical approach also revealed a myricetin-induced increase in cell surface roughness and reduced elasticity. Taken together, we demonstrated the adverse effects of myricetin, pointing out that caution is required when considering powerful antioxidants for adjuvant therapy in copper-related neurodegeneration.


Asunto(s)
Cobre/toxicidad , Flavonoides/toxicidad , Neurotoxinas/toxicidad , Fenómenos Biomecánicos/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Humanos , Estrés Oxidativo/efectos de los fármacos
7.
Int J Mol Sci ; 20(11)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159465

RESUMEN

Flavonoids, polyphenols with anti-oxidative activity have high potential as novel therapeutics for neurodegenerative disease, but their applicability is rendered by their poor water solubility and chemical instability under physiological conditions. In this study, this is overcome by delivering flavonoids to model cell membranes (unsaturated DOPC) using prepared and characterized biodegradable mesoporous silica nanoparticles, MSNs. Quercetin, myricetin and myricitrin have been investigated in order to determine the relationship between flavonoid structure and protective activity towards oxidative stress, i.e., lipid peroxidation induced by the addition of hydrogen peroxide and/or Cu2+ ions. Among investigated flavonoids, quercetin showed the most enhanced and prolonged protective anti-oxidative activity. The nanomechanical (Young modulus) measurement of the MSNs treated DOPC membranes during lipid peroxidation confirmed attenuated membrane damage. By applying a combination of experimental techniques (atomic force microscopy-AFM, force spectroscopy, electrophoretic light scattering-ES and dynamic light scattering-DLS), this work generated detailed knowledge about the effects of flavonoid loaded MSNs on the elasticity of model membranes, especially under oxidative stress conditions. Results from this study will pave the way towards the development of innovative and improved markers for oxidative stress-associated neurological disorders. In addition, the obtained could be extended to designing effective delivery systems of other high potential bioactive molecules with an aim to improve human health in general.


Asunto(s)
Membrana Celular/metabolismo , Flavonoides/química , Peroxidación de Lípido , Modelos Biológicos , Nanopartículas/química , Dióxido de Silicio/química , Liberación de Fármacos , Módulo de Elasticidad , Flavonoides/administración & dosificación , Flavonoides/metabolismo , Humanos , Liposomas , Microscopía de Fuerza Atómica , Nanopartículas/ultraestructura , Oxidación-Reducción , Análisis Espectral
8.
Biochim Biophys Acta ; 1818(9): 2252-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22525598

RESUMEN

The aim of the present study was to encapsulate mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides, namely [(2R)-N-(adamant-1-yl)-3-(α,ß-d-mannopyranosyloxy)-2-methylpropanamide and (2R)-N-[3-(α-d-mannopyranosyloxy)-2-methylpropanoyl]-d,l-(adamant-2-yl)glycyl-l-alanyl-d-isoglutamine] in liposomes. The characterization of liposomes, size and surface morphology was performed using dynamic light scattering (DLS) and atomic force microscopy (AFM). The results have revealed that the encapsulation of examined compounds changes the size and surface of liposomes. After the concanavalin A (ConA) was added to the liposome preparation, increase in liposome size and their aggregation has been observed. The enlargement of liposomes was ascribed to the specific binding of the ConA to the mannose present on the surface of the prepared liposomes. Thus, it has been shown that the adamantyl moiety from mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides can be used as an anchor in the lipid bilayer for carbohydrate moiety exposed on the liposome surface.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/química , Manosa/química , Péptidos/química , Biofisica/métodos , Cromatografía/métodos , Concanavalina A/química , Concentración de Iones de Hidrógeno , Lectinas/química , Luz , Microscopía de Fuerza Atómica/métodos , Modelos Químicos , Conformación Molecular , Dispersión de Radiación , Electricidad Estática , Propiedades de Superficie , Ultracentrifugación
9.
Antioxidants (Basel) ; 12(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36978980

RESUMEN

The actual cumulative mass of released quercetin from nanoparticles within the dialysis membrane was determined under the influence of external stationary and alternating magnetic fields. We have shown that the control of the release kinetics of quercetin from MNPs, i.e., the distribution of quercetin between the nanoparticles and the suspension within the membrane, can be tuned by the simple combination of stationary and alternating magnetic fields. Under non-sink conditions, the proportion of quercetin in the suspension inside the membrane is increased toward the nanoparticles, resulting in the increased release of quercetin. The results obtained could be applied to the release of insoluble flavonoids in aqueous suspensions in general.

10.
Polymers (Basel) ; 15(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38006083

RESUMEN

Addressing the growing need for environmentally friendly fungicides in agriculture, this study explored the potential of biopolymer microparticles loaded with metal ions as a novel approach to combat fungal pathogens. Novel alginate microspheres and chitosan/alginate microcapsules loaded with zinc or with zinc and silver ions were prepared and characterized (microparticle size, morphology, topography, encapsulation efficiency, loading capacity, and swelling behavior). Investigation of molecular interactions in microparticles using FTIR-ATR spectroscopy exhibited complex interactions between all constituents. Fitting to the simple Korsmeyer-Peppas empirical model revealed the rate-controlling mechanism of metal ions release from microparticles is Fickian diffusion. Lower values of the release constant k imply a slower release rate of Zn2+ or Ag+ ions from microcapsules compared to that of microspheres. The antimicrobial potential of the new formulations against the fungus Botrytis cinerea was evaluated. When subjected to tests against the fungus, microspheres exhibited superior antifungal activity especially those loaded with both zinc and silver ions, reducing fungal growth up to 98.9% and altering the hyphal structures. Due to the slower release of metal ions, the microcapsule formulations seem suitable for plant protection throughout the growing season. The results showed the potential of these novel microparticles as powerful fungicides in agriculture.

11.
Antioxidants (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439459

RESUMEN

Superparamagnetic magnetite nanoparticles (MNPs) with excellent biocompatibility and negligible toxicity were prepared by solvothermal method and stabilized by widely used and biocompatible polymer poly(ethylene glycol) PEG-4000 Da. The unique properties of the synthesized MNPs enable them to host the unstable and water-insoluble quercetin as well as deliver and localize quercetin directly to the desired site. The chemical and physical properties were validated by X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), superconducting quantum interference device (SQUID) magnetometer, FTIR spectroscopy and dynamic light scattering (DLS). The kinetics of in vitro quercetin release from MNPs followed by UV/VIS spectroscopy was controlled by employing combined stationary and alternating magnetic fields. The obtained results have shown an increased response of quercetin from superparamagnetic MNPs under a lower stationary magnetic field and s higher frequency of alternating magnetic field. The achieved findings suggested that we designed promising targeted quercetin delivery with fine-tuning drug release from magnetic MNPs.

12.
Antioxidants (Basel) ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34679762

RESUMEN

Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.

13.
Nanomaterials (Basel) ; 11(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207588

RESUMEN

The constantly growing need for advanced bone regeneration materials has motivated the development of calcium phosphates (CaPs) composites with a different metal or metal-oxide nanomaterials and their economical and environmentally friendly production. Here, two procedures for the synthesis of CaPs composites with TiO2 nanoplates (TiNPl) and nanowires (TiNWs) were tested, with the immersion of TiO2 nanomaterials (TiNMs) in corrected simulated body fluid (c-SBF) and precipitation of CaP in the presence of TiNMs. The materials obtained were analyzed by powder X-ray diffraction, spectroscopic and microscopic techniques, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, dynamic and electrophoretic light scattering, and their hemocompatibility and ability to induce reactive oxygen species were evaluated. After 28 days of immersion in c-SBF, no significant CaP coating was formed on TiNMs. However, the composites with calcium-deficient apatite (CaDHA) were obtained after one hour in the spontaneous precipitation system. In the absence of TiNMs, CaDHA was also formed, indicating that control of the CaP phase formed can be accomplished by fine-tuning conditions in the precipitation system. Although the morphology and size of crystalline domains of CaDHA obtained on the different nanomaterials differed, no significant difference was detected in their local structure. Composites showed low reactive oxygen species (ROS) production and did not induce hemolysis. The results obtained indicate that precipitation is a suitable and fast method for the preparation of CaPs/TiNMs nanocomposites which shows great potential for biomedical applications.

14.
MethodsX ; 8: 101312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434832

RESUMEN

Iron nanoparticles are used as a targeted drug delivery system. The nanocarrier itself can be genotoxic, trigger oxidative stress or cell death. Therefore, we developed an AC/DC magnetic syringe for injecting, stimulating drug release and safe removing of the nanocarrier. Alongside we optimized the method for nanoparticles' drug release kinetics and testing cytotoxicity in vitro.•This paper presents detailed instructions for construction of AC/DC magnetic syringe device for stimulated drug release, injection and ejection of magnetic nanoparticles; nanoparticles preparation; adsorbing methylene blue on nanoparticles; determination of drug release kinetics from nanocarriers on the example of methylene blue•Gomori´s Prussian blue reaction for differentiated SH-SY5Y human neuroblastoma cell line; MTT viability assay optimized for differentiated SH-SY5Y human neuroblastoma cell line and antioxidant enzymes activities assay and lipid peroxidation methods are optimized for cell analyses cell cultivation for nanoparticles cytotoxicity testing in vitro.•Those protocols are the first step toward further testing the effect of nanoparticles in vivo, on brain tissue.

15.
J Hazard Mater ; 409: 124918, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33422751

RESUMEN

Continuing our previous research work on a drug delivery system based on combined AC/DC magnetic fields, we have developed a prototype AC/DC magnetic syringe device for stimulation of drug release from drug carriers, with the options of injecting/removing drug carriers. The porous Fe3O4 carrier, in a dose-dependent manner, causes acute oxidative damage and reduces the viability of differentiated SH-SY5Y human neuroblastoma cells, indicating the necessity for its removal once it reaches the therapeutic concentration at the target tissue. The working mechanism of the device consists of three simple steps. First, direct injection of the drug adsorbed on the surface of a carrier via a needle inserted into the targeted area. The second step is stimulation of drug release using a combination of AC magnetic field (a coil magnetised needle with AC current) and permanent magnets (DC magnetic lens outside of the body), and the third step is removal of the drug carriers from the injected area after the completion of drug release by magnetising the tip of the needle with DC current. Removing the drug carriers allows us to avoid possible acute and long term side effects of the drug carriers in the patient's body, as well as any potential response of the body to the drug carriers.


Asunto(s)
Portadores de Fármacos , Imanes , Liberación de Fármacos , Humanos , Campos Magnéticos , Magnetismo
16.
Coll Antropol ; 34 Suppl 1: 235-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20402325

RESUMEN

The aim of this study was to obtain the 3-D qualitative and quantitative nanoscale data of the surface topography and surface roughness of glazed and unglazed feldspathic ceramics. Twelve samples composed of Ni-Cr alloy (Wiron 99, Bego Germany) and feldspathic ceramics (IPS Classic, Ivoclar-Vivadent, Schaan, Liechtenstein) were prepared, and divided into two groups, dependent of the surface final finishing; 6 unglazed and 6 glazed samples. The surface of the samples was recorded and analysed by atomic force microscopy (AFM, Veeco Instruments, Santa Barbara, CA, U.S.A.). According to the results of this study, unglazed ceramic surface is significantly rougher than the glazed one, showing significantly higher root mean square (RMS), mean roughness (Ra) and maximum height (Z range values) (p < 0.01), higher crystallites with sharper peaks and deeper pores. The roughness parameters of the unglazed samples were almost twice or even more higher than of the glazed samples. Exposed unglazed ceramic surfaces can therefore promote antagonistic tooth wear.


Asunto(s)
Cerámica/química , Porcelana Dental/química , Humanos , Microscopía de Fuerza Atómica , Propiedades de Superficie
17.
Colloids Surf B Biointerfaces ; 193: 111147, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32526654

RESUMEN

We here report on flavonols (myricetin (MCE) and its glycoside myricitrin (MCI)) - 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane interactions focusing on the effects of flavonol clustering on the membrane thermotropic and nanomechanical properties. Atomic force microscopy (AFM), force spectroscopy (FS) and differential scanning calorimetry (DSC) together with molecular dynamics (MD) simulations provided a consistent picture of flavonol - DMPC membrane interactions. DMPC membrane as a supported lipid bilayer preserved its integrity even at higher flavonol molar fraction x. When present at x = 0.1 - 0.3, MCE and MCI both slightly improve DMPC bilayer fluidity which is evidenced by the decrease in the main phase transition temperature Tm. MCE is found within the interior of the bilayer, while MCI incorporates in the head group-water interface region. AFM and FS confirmed clusters as protrusions with an average height of 0.012 µm and average diameters of 0.60 and 0.24 µm for MCE and MCI clusters, respectively. The average membrane thickness in DMPC fluid phase decreases for 7% at xMCE = 0.30, while only 4% at xMCI = 0.27. The induced membrane changes are dependent on the chemical and physical properties of inserted flavonols. The hypothesis regarding the tendency of flavonol to clustering in membranes by increasing flavonol molar fraction has been confirmed.


Asunto(s)
Dimiristoilfosfatidilcolina/química , Flavonoides/química , Simulación de Dinámica Molecular , Rastreo Diferencial de Calorimetría , Microscopía de Fuerza Atómica , Estructura Molecular , Imagen Individual de Molécula
18.
Antioxidants (Basel) ; 9(5)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429305

RESUMEN

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.

19.
Carbohydr Polym ; 218: 234-242, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31221326

RESUMEN

The structure-property relationship in alginate microparticles (microspheres and microcapsules prepared with or without Trichoderma viride spores (Tv) was investigated. Surface morphology, structure and release behavior from alginate microparticles strongly depend on calcium concentration and presence of Tv and chitosan layer. All microparticles exhibited a granular surface structure with substructures consisting of abundant smaller particles. In vitro active agents release study revealed that the increase in calcium cation concentration reduced the release rate of Tv (˜84% for microspheres; ˜57% for microcapsules) and calcium cations (˜20% for microspheres; ˜23% for microcapsules). The average decrease in k values due to chitosan layer addition is 41% for Tv and 93% for calcium ions, respectively. The underlying Tv release mechanism from microspheres is anomalous transport kinetics, whereas from microcapsules is controlled by Type II transport. The differences in microparticle surface properties did not affect the mechanism controlling calcium ions release detected as diffusion through microparticles.


Asunto(s)
Alginatos/química , Calcio/química , Esporas Fúngicas/química , Cápsulas/química , Tamaño de la Partícula , Propiedades de Superficie , Trichoderma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA