Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 160(4): 771-784, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679766

RESUMEN

Aneuploid genomes, characterized by unbalanced chromosome stoichiometry (karyotype), are associated with cancer malignancy and drug resistance of pathogenic fungi. The phenotypic diversity resulting from karyotypic diversity endows the cell population with superior adaptability. We show here, using a combination of experimental data and a general stochastic model, that the degree of phenotypic variation, thus evolvability, escalates with the degree of overall growth suppression. Such scaling likely explains the challenge of treating aneuploidy diseases with a single stress-inducing agent. Instead, we propose the design of an "evolutionary trap" (ET) targeting both karyotypic diversity and fitness. This strategy entails a selective condition "channeling" a karyotypically divergent population into one with a predominant and predictably drugable karyotypic feature. We provide a proof-of-principle case in budding yeast and demonstrate the potential efficacy of this strategy toward aneuploidy-based azole resistance in Candida albicans. By analyzing existing pharmacogenomics data, we propose the potential design of an ET against glioblastoma.


Asunto(s)
Aneuploidia , Candida albicans/efectos de los fármacos , Candida albicans/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Antifúngicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Línea Celular Tumoral , Farmacorresistencia Fúngica , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Fluconazol/farmacología , Humanos , Higromicina B/farmacología , Irinotecán , Saccharomyces cerevisiae/metabolismo
2.
Cell ; 146(1): 92-104, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729782

RESUMEN

Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.


Asunto(s)
Transactivadores/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Complejo Mediador , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo
3.
PLoS Genet ; 18(12): e1009847, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477651

RESUMEN

Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtfpoison protein and a Wtfantidote protein using alternative transcriptional start sites. Here, we analyze how the expression and localization of the Wtf proteins are regulated to achieve drive. We show that transcriptional timing and selective protein exclusion from developing spores ensure that all spores are exposed to Wtf4poison, but only the spores that inherit wtf4 receive a dose of Wtf4antidote sufficient for survival. In addition, we show that the Mei4 transcription factor, a master regulator of meiosis, controls the expression of the wtf4poison transcript. This transcriptional regulation, which includes the use of a critical meiotic transcription factor, likely complicates the universal suppression of wtf genes without concomitantly disrupting spore viability. We propose that these features contribute to the evolutionary success of the wtf drivers.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Esporas Fúngicas/genética , Proteínas de Schizosaccharomyces pombe/genética , Meiosis , Factores de Transcripción/genética
4.
Dev Biol ; 488: 91-103, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609633

RESUMEN

The Drosophila BMP 2/4 homologue Decapentaplegic (Dpp) acts as a morphogen to regulate diverse developmental processes, including wing morphogenesis. Transcriptional feedback regulation of this pathway ensures tightly controlled signaling outputs to generate the precise pattern of the adult wing. Nevertheless, few direct Dpp target genes have been explored and our understanding of feedback regulation remains incomplete. Here we employ transcriptional profiling following dpp conditional knockout to identify nord, a novel Dpp/BMP feedback regulator. nord mutants generated by CRISPR/Cas9 mutagenesis produce a smaller wing and display low penetrance venation defects. At the molecular level, nord encodes a secreted heparin-binding protein, and we show that its overexpression is sufficient to antagonize Dpp/BMP signaling. Mechanistically, we demonstrate that Nord physically interacts with the Dpp/BMP co-receptor Dally and promotes its degradation. In sum, we propose that Nord fine-tunes Dpp/BMP signaling by regulating Dally availability on the cell surface, with implications for both developmental and disease models.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentación , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/fisiología , Alas de Animales/metabolismo
5.
Cell ; 135(5): 879-93, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041751

RESUMEN

The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and cytokinesis. The evolved cytokinesis phenotypes correlated with specific changes in the transcriptome. Polyploidy and aneuploidy were common genetic alterations in the best evolved strains, and aneuploidy could account for gene expression changes due directly to altered chromosome stoichiometry as well as to downstream effects. The phenotypic effect of aneuploidy could be recapitulated with increased copy numbers of specific regulatory genes in myo1Delta cells. These results demonstrate the evolvability of even a well-conserved process and suggest that changes in chromosome stoichiometry provide a source of heritable variation driving the emergence of adaptive phenotypes when the cell division machinery is strongly perturbed.


Asunto(s)
Aneuploidia , Evolución Molecular Dirigida , Cadenas Pesadas de Miosina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocinesis , Eliminación de Gen , Genoma Fúngico , Poliploidía
6.
PLoS Genet ; 14(10): e1007440, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30312294

RESUMEN

Antimicrobial peptides act as a host defense mechanism and regulate the commensal microbiome. To obtain a comprehensive view of genes contributing to long-term memory we performed mRNA sequencing from single Drosophila heads following behavioral training that produces long-lasting memory. Surprisingly, we found that Diptericin B, an immune peptide with antimicrobial activity, is upregulated following behavioral training. Deletion and knock down experiments revealed that Diptericin B and another immune peptide, Gram-Negative Bacteria Binding Protein like 3, regulate long-term but not short-term memory or instinctive behavior in Drosophila. Interestingly, removal of DptB in the head fat body and GNBP-like3 in neurons results in memory deficit. That putative antimicrobial peptides influence memory provides an example of how some immune peptides may have been repurposed to influence the function of nervous system.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica/métodos , Memoria a Largo Plazo , Animales , Animales Modificados Genéticamente , Péptidos Catiónicos Antimicrobianos/metabolismo , Encéfalo/metabolismo , Regulación hacia Abajo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Interferencia de ARN
7.
Nucleic Acids Res ; 46(9): 4440-4455, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29522205

RESUMEN

Correct localization of the centromeric histone variant CenH3/CENP-A/Cse4 is an important part of faithful chromosome segregation. Mislocalization of CenH3 could affect chromosome segregation, DNA replication and transcription. CENP-A is often overexpressed and mislocalized in cancer genomes, but the underlying mechanisms are not understood. One major regulator of Cse4 deposition is Psh1, an E3 ubiquitin ligase that controls levels of Cse4 to prevent deposition into non-centromeric regions. We present evidence that Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved histone H3/H4 chaperone with subunits shown previously to interact with CenH3 in flies and human cells, regulates Cse4 deposition in budding yeast. yCAF-1 interacts with Cse4 and can assemble Cse4 nucleosomes in vitro. Loss of yCAF-1 dramatically reduces the amount of Cse4 deposited into chromatin genome-wide when Cse4 is overexpressed. The incorporation of Cse4 genome-wide may have multifactorial effects on growth and gene expression. Loss of yCAF-1 can rescue growth defects and some changes in gene expression associated with Cse4 deposition that occur in the absence of Psh1-mediated proteolysis. Incorporation of Cse4 into promoter nucleosomes at transcriptionally active genes depends on yCAF-1. Overall our findings suggest CAF-1 can act as a CenH3 chaperone, regulating levels and incorporation of CenH3 in chromatin.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Centrómero/química , Proteínas Cromosómicas no Histona/análisis , Proteínas de Unión al ADN/análisis , Eliminación de Gen , Expresión Génica , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Telómero , Ubiquitinación
8.
Dev Biol ; 433(2): 357-373, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100657

RESUMEN

The epidermis is essential for animal survival, providing both a protective barrier and cellular sensor to external environments. The generally conserved embryonic origin of the epidermis, but the broad morphological and functional diversity of this organ across animals is puzzling. We define the transcriptional regulators underlying epidermal lineage differentiation in the planarian Schmidtea mediterranea, an invertebrate organism that, unlike fruitflies and nematodes, continuously replaces its epidermal cells. We find that Smed-p53, Sox and Pax transcription factors are essential regulators of epidermal homeostasis, and act cooperatively to regulate genes associated with early epidermal precursor cell differentiation, including a tandemly arrayed novel gene family (prog) of secreted proteins. Additionally, we report on the discovery of distinct and previously undescribed secreted organelles whose production is dependent on the transcriptional activity of soxP-3, and which we term Hyman vesicles.


Asunto(s)
Células Epidérmicas , Proteínas del Helminto/fisiología , Planarias/citología , Estructuras Animales/ultraestructura , Animales , Anticuerpos Antihelmínticos/inmunología , Diferenciación Celular/genética , Linaje de la Célula , Movimiento Celular , Epidermis/metabolismo , Epidermis/efectos de la radiación , Epidermis/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Genes de Helminto , Proteínas del Helminto/genética , Proteínas del Helminto/inmunología , Mesodermo/citología , Microscopía Electrónica , Familia de Multigenes , Orgánulos/ultraestructura , Planarias/metabolismo , Planarias/ultraestructura , Interferencia de ARN , Factores de Transcripción/fisiología
9.
Mol Cell ; 42(1): 118-26, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21474073

RESUMEN

The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetiltransferasas/metabolismo , Efectos de la Posición Cromosómica , Silenciador del Gen , Genes Fúngicos , Estudio de Asociación del Genoma Completo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Metilación , Acetiltransferasa A N-Terminal , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Telómero/genética , Telómero/metabolismo
10.
Nature ; 482(7384): 246-50, 2012 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-22286062

RESUMEN

Aneuploidy--the state of having uneven numbers of chromosomes--is a hallmark of cancer and a feature identified in yeast from diverse habitats. Recent studies have shown that aneuploidy is a form of large-effect mutation that is able to confer adaptive phenotypes under diverse stress conditions. Here we investigate whether pleiotropic stress could induce aneuploidy in budding yeast (Saccharomyces cerevisae). We show that whereas diverse stress conditions can induce an increase in chromosome instability, proteotoxic stress, caused by transient Hsp90 (also known as Hsp82 or Hsc82) inhibition or heat shock, markedly increased chromosome instability to produce a cell population with high karyotype diversity. The induced chromosome instability is linked to an evolutionarily conserved role for the Hsp90 chaperone complex in kinetochore assembly. Continued growth in the presence of an Hsp90 inhibitor resulted in the emergence of drug-resistant colonies with chromosome XV gain. This drug-resistance phenotype is a quantitative trait involving copy number increases of at least two genes located on chromosome XV. Short-term exposure to Hsp90 stress potentiated fast adaptation to unrelated cytotoxic compounds by means of different aneuploid chromosome stoichiometries. These findings demonstrate that aneuploidy is a form of stress-inducible mutation in eukaryotes, capable of fuelling rapid phenotypic evolution and drug resistance, and reveal a new role for Hsp90 in regulating the emergence of adaptive traits under stress.


Asunto(s)
Adaptación Biológica , Aneuploidia , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Inestabilidad Cromosómica/efectos de los fármacos , Inestabilidad Cromosómica/genética , Cromosomas Fúngicos/efectos de los fármacos , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Farmacorresistencia Fúngica , Evolución Molecular , Cariotipificación , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Fenotipo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Tunicamicina/farmacología
11.
PLoS Genet ; 11(7): e1005308, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26176819

RESUMEN

The Scc2-Scc4 complex is essential for loading the cohesin complex onto DNA. Cohesin has important roles in chromosome segregation, DSB repair, and chromosome condensation. Here we report that Scc2 is important for gene expression in budding yeast. Scc2 and the transcriptional regulator Paf1 collaborate to promote the production of Box H/ACA snoRNAs which guide pseudouridylation of RNAs including ribosomal RNA. Mutation of SCC2 was associated with defects in the production of ribosomal RNA, ribosome assembly, and splicing. While the scc2 mutant does not have a general defect in protein synthesis, it shows increased frameshifting and reduced cap-independent translation. These findings suggest Scc2 normally promotes a gene expression program that supports translational fidelity. We hypothesize that translational dysfunction may contribute to the human disorder Cornelia de Lange syndrome, which is caused by mutations in NIPBL, the human ortholog of SCC2.


Asunto(s)
Proteínas Cromosómicas no Histona/biosíntesis , Síndrome de Cornelia de Lange/genética , Biosíntesis de Proteínas , Proteínas/genética , ARN Largo no Codificante/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/patología , Regulación Fúngica de la Expresión Génica , Humanos , Empalme del ARN/genética , ARN Largo no Codificante/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , ARN Nucleolar Pequeño/biosíntesis , ARN Nucleolar Pequeño/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
12.
EMBO Rep ; 15(5): 609-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24631914

RESUMEN

Eco1 is the acetyltransferase that establishes sister-chromatid cohesion during DNA replication. A budding yeast strain with an eco1 mutation that genocopies Roberts syndrome has reduced ribosomal DNA (rDNA) transcription and a transcriptional signature of starvation. We show that deleting FOB1--a gene that encodes a replication fork-blocking protein specific for the rDNA region--rescues rRNA production and partially rescues transcription genome-wide. Further studies show that deletion of FOB1 corrects the genome-wide replication defects, nucleolar structure, and rDNA segregation that occur in the eco1 mutant. Our study highlights that the presence of cohesin at the rDNA locus has a central role in controlling global DNA replication and gene expression.


Asunto(s)
Acetiltransferasas/genética , Replicación del ADN/genética , ADN Ribosómico/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/genética , ADN Ribosómico/genética , Eliminación de Gen , Mutación , ARN Ribosómico/genética , Ribosomas/metabolismo , Transcripción Genética/genética , Cohesinas
13.
Mol Cell Proteomics ; 13(6): 1510-22, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24722732

RESUMEN

The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBß, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.


Asunto(s)
Mapas de Interacción de Proteínas/genética , Proteómica , Factor de Transcripción ReIA/biosíntesis , Factores de Transcripción/biosíntesis , Citoplasma/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Espectrometría de Masas , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/genética
14.
Mol Cell Proteomics ; 13(11): 3114-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25073741

RESUMEN

Histone deacetylases (HDACs) are targets for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor approved by the U.S. Food and Drug Administration for the treatment of cutaneous T-cell lymphoma. To obtain a better mechanistic understanding of the Sin3/HDAC complex in cancer, we extended its protein-protein interaction network and identified a mutually exclusive pair within the complex. We then assessed the effects of SAHA on the disruption of the complex network through six homologous baits. SAHA perturbs multiple protein interactions and therefore compromises the composition of large parts of the Sin3/HDAC network. A comparison of the effect of SAHA treatment on gene expression in breast cancer cells to a knockdown of the ING2 subunit indicated that a portion of the anticancer effects of SAHA may be attributed to the disruption of ING2's association with the complex. Our dynamic protein interaction network resource provides novel insights into the molecular mechanism of SAHA action and demonstrates the potential for drugs to rewire networks.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Proteínas de Homeodominio/genética , Ácidos Hidroxámicos/farmacología , Mapas de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Proteínas Supresoras de Tumor/genética , Línea Celular Tumoral , Femenino , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Unión Proteica , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Vorinostat
16.
PLoS Genet ; 8(6): e1002749, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719263

RESUMEN

Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and (35)S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the human cohesinopathies.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Anomalías Craneofaciales , Ectromelia , Hipertelorismo , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetiltransferasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Ectromelia/genética , Ectromelia/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Hipertelorismo/genética , Hipertelorismo/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Polirribosomas/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
17.
Nature ; 455(7215): 997-1000, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18815595

RESUMEN

The meiotic cell cycle is modified from the mitotic cell cycle by having a pre-meiotic S phase that leads to high levels of recombination, two rounds of nuclear division with no intervening DNA synthesis and a reductional pattern of chromosome segregation. Rem1 is a cyclin that is only expressed during meiosis in the fission yeast Schizosaccharomyces pombe. Cells in which rem1 has been deleted show decreased intragenic meiotic recombination and a delay at the onset of meiosis I (ref. 1). When ectopically expressed in mitotically growing cells, Rem1 induces a G1 arrest followed by severe mitotic catastrophes. Here we show that rem1 expression is regulated at the level of both transcription and splicing, encoding two proteins with different functions depending on the intron retention. We have determined that the regulation of rem1 splicing is not dependent on any transcribed region of the gene. Furthermore, when the rem1 promoter is fused to other intron-containing genes, the chimaeras show a meiotic-specific regulation of splicing, exactly the same as endogenous rem1. This regulation is dependent on two transcription factors of the forkhead family, Mei4 (ref. 2) and Fkh2 (ref. 3). Whereas Mei4 induces both transcription and splicing of rem1, Fkh2 is responsible for the intron retention of the transcript during vegetative growth and the pre-meiotic S phase.


Asunto(s)
Empalme Alternativo/genética , Ciclinas/genética , Regiones Promotoras Genéticas/genética , Schizosaccharomyces/genética , Regulación Fúngica de la Expresión Génica , Intrones/genética , Meiosis/genética , Recombinación Genética , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Empalmosomas/química , Empalmosomas/genética , Empalmosomas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
18.
Mol Cell Proteomics ; 11(4): M111.011544, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22199229

RESUMEN

A significant challenge in biology is to functionally annotate novel and uncharacterized proteins. Several approaches are available for deducing the function of proteins in silico based upon sequence homology and physical or genetic interaction, yet this approach is limited to proteins with well-characterized domains, paralogs and/or orthologs in other species, as well as on the availability of suitable large-scale data sets. Here, we present a quantitative proteomics approach extending the protein network of core histones H2A, H2B, H3, and H4 in Saccharomyces cerevisiae, among which a novel associated protein, the previously uncharacterized Ydl156w, was identified. In order to predict the role of Ydl156w, we designed and applied integrative bioinformatics, quantitative proteomics and biochemistry approaches aiming to infer its function. Reciprocal analysis of Ydl156w protein interactions demonstrated a strong association with all four histones and also to proteins strongly associated with histones including Rim1, Rfa2 and 3, Yku70, and Yku80. Through a subsequent combination of the focused quantitative proteomics experiments with available large-scale genetic interaction data and Gene Ontology functional associations, we provided sufficient evidence to associate Ydl156w with multiple processes including chromatin remodeling, transcription and DNA repair/replication. To gain deeper insights into the role of Ydl156w in histone biology we investigated the effect of the genetic deletion of ydl156w on H4 associated proteins, which lead to a dramatic decrease in the association of H4 with RNA polymerase III proteins. The implication of a role for Ydl156w in RNA Polymerase III mediated transcription was consequently verified by RNA-Seq experiments. Finally, using these approaches we generated a refined network of Ydl156w-associated proteins.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteómica/métodos , ARN Polimerasa III/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
19.
Mol Cell Proteomics ; 11(12): 1815-28, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22984288

RESUMEN

Here we describe the function of a previously uncharacterized protein, named family with sequence similarity 60 member A (FAM60A) that maps to chromosome 12p11 in humans. We use quantitative proteomics to determine that the main biochemical partners of FAM60A are subunits of the Sin3 deacetylase complex and show that FAM60A resides in active HDAC complexes. In addition, we conduct gene expression pathway analysis and find that FAM60A regulates expression of genes that encode components of the TGF-beta signaling pathway. Moreover, our studies reveal that loss of FAM60A or another component of the Sin3 complex, SDS3, leads to a change in cell morphology and an increase in cell migration. These studies reveal the function of a previously uncharacterized protein and implicate the Sin3 complex in suppressing cell migration.


Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Células HEK293 , Células Hep G2 , Inhibidores de Histona Desacetilasas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Receptores Citoplasmáticos y Nucleares/genética , Análisis de Secuencia de Proteína , Complejo Correpresor Histona Desacetilasa y Sin3/análisis , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Supresoras de Tumor/genética
20.
bioRxiv ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39386535

RESUMEN

Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA