Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 282(1801): 20142675, 2015 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-25589604

RESUMEN

Carnivorous Nepenthes pitcher plants capture arthropods with specialized slippery surfaces. The key trapping surface, the pitcher rim (peristome), is highly slippery when wetted by rain, nectar or condensation, but not when dry. As natural selection should favour adaptations that maximize prey intake, the evolution of temporarily inactive traps seems paradoxical. Here, we show that intermittent trap deactivation promotes 'batch captures' of ants. Prey surveys revealed that N. rafflesiana pitchers sporadically capture large numbers of ants from the same species. Continuous experimental wetting of the peristome increased the number of non-recruiting prey, but decreased the number of captured ants and shifted their trapping mode from batch to individual capture events. Ant recruitment was also lower to continuously wetted pitchers. Our experimental data fit a simple model that predicts that intermittent, wetness-based trap activation should allow safe access for 'scout' ants under dry conditions, thereby promoting recruitment and ultimately higher prey numbers. The peristome trapping mechanism may therefore represent an adaptation for capturing ants. The relatively rare batch capture events may particularly benefit larger plants with many pitchers. This explains why young plants of many Nepenthes species additionally employ wetness-independent, waxy trapping surfaces.


Asunto(s)
Hormigas/fisiología , Evolución Biológica , Cadena Alimentaria , Magnoliopsida/fisiología , Animales , Carnivoría
2.
Proc Biol Sci ; 281(1775): 20132144, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24307667

RESUMEN

Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield.


Asunto(s)
Hormigas/fisiología , Conducta Animal , Cacao/fisiología , Productos Agrícolas/fisiología , Conducta Social , Clima Tropical , Animales , Ecosistema , Herbivoria , Insectos Vectores/microbiología , Insectos Vectores/fisiología , Especies Introducidas , Enfermedades de las Plantas/microbiología
3.
Front Plant Sci ; 10: 519, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105722

RESUMEN

Tree seedling resistance to and recovery from abiotic stressors such as drought and warming are crucial for forest regeneration and persistence. Selection of more resilient provenances and their use in forest management programs might alleviate pressures of climate change on forest ecosystems. Scots pine forests in particular have suffered frequent drought-induced mortality, suggesting high vulnerability to extreme events. Here, we conducted an experiment using potted Scots pine seedlings from ten provenances of its south-western distribution range to investigate provenance-specific impacts of multiple drought events. Seedlings were grown under ambient and elevated temperatures for 1.5 years and were subjected to consecutive droughts during spring and summer. Growth (height, diameter, and needle) and spring phenology were monitored during the whole study period and complemented by biomass assessments (bud, needle, wood, and needle/wood ratio) as well as measurements of chlorophyll fluorescence and of needle stable carbon isotope ratio. Phenology, growth and biomass parameters as well as carbon isotope ratio and their (direct) responses to reoccurring droughts differed between provenances, indicating genotypic adaptation. Seedling growth was plastic during drought with intra- and inter-annual compensatory growth after drought stress release (carryover effects), however, not fully compensating the initial impact. For (smaller) seedlings from southern/drier origins, sometimes greater drought resistance was observed which diminished under warmer conditions in the greenhouse. Warming increased diameter growth and advanced phenological development, which was (partly) delayed by drought in 2013, but advanced in 2014. Earlier phenology was linked to higher growth in 2013, but interestingly later phenology had positive effects on wood and needle biomass when subjected to drought. Lastly, stable carbon isotope ratios indicated a clear drought response of carbon assimilation. Drought-induced reduction of the photosystem II efficiency was only observed under warmer conditions but showed compensation under ambient temperatures. Besides these direct drought impacts, also interactive effects of previous drought events were shown, either reinforcing or sometimes attenuating the actual impact. Thus, depending on amount and timing of events, Scots pine seedlings, particularly from southern origins, might be well adapted and resilient to drought stress and should be considered when discussing assisted migration under changing climatic conditions.

4.
Front Plant Sci ; 8: 598, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473841

RESUMEN

Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species' responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy.

5.
Front Plant Sci ; 7: 1014, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458477

RESUMEN

Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012-2014) and drought treatments (2013-2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest.

6.
Front Plant Sci ; 7: 1247, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27630643

RESUMEN

With recent climate changes, Scots pine (Pinus sylvestris L.) forests have been affected by die-off events. Assisted migration of adapted provenances mitigates drought impacts and promotes forest regeneration. Although suitable provenances are difficult to identify by traditional ecophysiological techniques, which are time consuming and invasive, plant water status can be easily assessed by infrared thermography. Thus, we examined the stress responses of 2-year-old potted Scots pine seedlings from six provenances (Bulgaria, France, Germany, Italy, Poland, and Spain) based on two thermal indices (crop water stress index and stomatal conductance index). Both indices were derived from infrared images during a 6-week drought/control treatment in a greenhouse in the summer of 2013. The pines were monitored during the stress and subsequent recovery period. After controlling for fluctuating environmental conditions, soil moisture or treatment-specific water supply was the most important driver of drought stress. The stress magnitude and response to soil water deficit depended on provenance. Under moderate drought conditions, pines from western and eastern Mediterranean provenances (Bulgaria, France, and Spain) expressed lower stress levels than those from both continental provenances (Germany and Poland). Moreover, pines from continental provenances were less resilient (showed less recovery after the stress period) than Mediterranean pines. Under extreme drought, all provenances were equally stressed with almost no significant differences in their thermal indices. Provenance-specific differences in drought resistance, which are associated with factors such as summer precipitation at the origin of Scots pine seedlings, may offer promising tracks of adaptation to future drought risks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA