RESUMEN
Cross-linking net aggregates of thermolabile thaumatin-like proteins (TLPs) and chitinases (CHIs) are the primary source of haze in white wines. Although bentonite fining is still routinely used in winemaking, alternative methods to selectively remove haze proteins without affecting wine organoleptic properties are needed. The availability of pure TLPs and CHIs would facilitate the research for the identification of such technological advances. Therefore, we proposed the usage of recombinant TLP (rTLP) and CHI (rCHI), expressed by Komagataella phaffii, as haze-protein models, since they showed similar characteristics (aggregation potential, melting point, functionality, glycosylation levels and bentonite adsorption) to the native-haze proteins from Vitis vinifera. Hence, rTLP and rCHI can be applied to study haze formation mechanisms on a molecular level and to explore alternative fining methods by screening proteolytic enzymes and ideal adsorptive resins.
Asunto(s)
Quitinasas , Vitis , Vino , Bentonita/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Aditivos Alimentarios/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Vino/análisisRESUMEN
The comprehensive identification of the proteome content from a white wine (cv. Silvaner) is described here for the first time. The wine protein composition isolated from a representative wine sample (250 L) was identified via mass spectrometry (MS)-based proteomics following in-solution and in-gel digestion methods after being submitted to size exclusion chromatographic (SEC) fractionation to gain a comprehensive insight into proteins that survive the vinification processes. In total, we identified 154 characterized (with described functional information) or so far uncharacterized proteins, mainly from Vitis vinifera L. and Saccharomyces cerevisiae. With the complementarity of the two-step purification, the digestion techniques and the high-resolution (HR)-MS analyses provided a high-score identification of proteins from low to high abundance. These proteins can be valuable for future authentication of wines by tracing proteins derived from a specific cultivar or winemaking process. The proteomics approach presented herein may also be generally helpful to understand which proteins are important for the organoleptic properties and stability of wines.
Asunto(s)
Vitis , Vino , Vino/análisis , Proteómica/métodos , Vitis/química , Espectrometría de Masas , Saccharomyces cerevisiae , Proteoma/metabolismoRESUMEN
To meet consumer expectations, white wines must be clear and stable against haze formation. Temperature variations during transport and storage may induce protein aggregation, mainly caused by thaumatin like-proteins (TLPs) and chitinases (CHIs), which thus need to be fined before bottling of the wine. Currently, bentonite clay is employed to inhibit or minimize haze formation in wines. Alternatively, peptidases have emerged as an option for the removal of these thermolabile proteins, although their efficacy under winemaking conditions has not yet been fully demonstrated. The simultaneous understanding of the chemistry behind the cleavage of haze proteins and the haze formation may orchestrate alternative methods of technological and economic importance in winemaking. Therefore, we provide an overview of wine fining by peptidases, and new perspectives are developed to reopen discussions on the aforementioned challenges.