Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830974

RESUMEN

Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is suggested to represent atypical developmental or degenerative changes accompanying an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate into volume loss is crucial. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Of the CHR individuals, 33 developed psychosis (CHR-P), while 127 did not (CHR-NP). Among all participants, longitudinal data was available for 45 HCs, 17 CHR-P, and 66 CHR-NP. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the CHR-P from the CHR-NP. In addition, for completeness, we also investigated changes in cortical thickness and in white matter (WM) microstructure. At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in many brain areas, the CHR-P group demonstrated significantly accelerated changes (iFW increase and volume reduction) with time than the CHR-NP group. Cortical thickness provided similar results as volume, and there were no significant changes in WM microstructure. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes or microstructural WM changes, and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes, as reflected by the increased iFW, are thus an early pathology at the prodromal stage of psychosis that may be useful for a better mechanistic understanding of psychosis development.

2.
Psychol Med ; : 1-11, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497117

RESUMEN

BACKGROUND: Mild traumatic brain injury (mTBI) is common in children. Long-term cognitive and behavioral outcomes as well as underlying structural brain alterations following pediatric mTBI have yet to be determined. In addition, the effect of age-at-injury on long-term outcomes is largely unknown. METHODS: Children with a history of mTBI (n = 406; Mage = 10 years, SDage = 0.63 years) who participated in the Adolescent Brain Cognitive Development (ABCD) study were matched (1:2 ratio) with typically developing children (TDC; n = 812) and orthopedic injury (OI) controls (n = 812). Task-based executive functioning, parent-rated executive functioning and emotion-regulation, and self-reported impulsivity were assessed cross-sectionally. Regression models were used to examine the effect of mTBI on these domains. The effect of age-at-injury was assessed by comparing children with their first mTBI at either 0-3, 4-7, or 8-10 years to the respective matched TDC controls. Fractional anisotropy (FA) and mean diffusivity (MD), both MRI-based measures of white matter microstructure, were compared between children with mTBI and controls. RESULTS: Children with a history of mTBI displayed higher parent-rated executive dysfunction, higher impulsivity, and poorer self-regulation compared to both control groups. At closer investigation, these differences to TDC were only present in one respective age-at-injury group. No alterations were found in task-based executive functioning or white matter microstructure. CONCLUSIONS: Findings suggest that everyday executive function, impulsivity, and emotion-regulation are affected years after pediatric mTBI. Outcomes were specific to the age at which the injury occurred, suggesting that functioning is differently affected by pediatric mTBI during vulnerable periods. Groups did not differ in white matter microstructure.

3.
Mol Psychiatry ; 28(5): 2030-2038, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37095352

RESUMEN

Studies applying Free Water Imaging have consistently reported significant global increases in extracellular free water (FW) in populations of individuals with early psychosis. However, these published studies focused on homogenous clinical participant groups (e.g., only first episode or chronic), thereby limiting our understanding of the time course of free water elevations across illness stages. Moreover, the relationship between FW and duration of illness has yet to be directly tested. Leveraging our multi-site diffusion magnetic resonance imaging(dMRI) harmonization approach, we analyzed dMRI scans collected by 12 international sites from 441 healthy controls and 434 individuals diagnosed with schizophrenia-spectrum disorders at different illness stages and ages (15-58 years). We characterized the pattern of age-related FW changes by assessing whole brain white matter in individuals with schizophrenia and healthy controls. In individuals with schizophrenia, average whole brain FW was higher than in controls across all ages, with the greatest FW values observed from 15 to 23 years (effect size range = [0.70-0.87]). Following this peak, FW exhibited a monotonic decrease until reaching a minima at the age of 39 years. After 39 years, an attenuated monotonic increase in FW was observed, but with markedly smaller effect sizes when compared to younger patients (effect size range = [0.32-0.43]). Importantly, FW was found to be negatively associated with duration of illness in schizophrenia (p = 0.006), independent of the effects of other clinical and demographic data. In summary, our study finds in a large, age-diverse sample that participants with schizophrenia with a shorter duration of illness showed higher FW values compared to participants with more prolonged illness. Our findings provide further evidence that elevations in the FW are present in individuals with schizophrenia, with the greatest differences in the FW being observed in those at the early stages of the disorder, which might suggest acute extracellular processes.

4.
Am J Geriatr Psychiatry ; 32(1): 1-16, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37845116

RESUMEN

The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.


Asunto(s)
Gerociencia , Salud Mental , Humanos , Anciano , Psiquiatría Geriátrica , Envejecimiento/fisiología , Biología
5.
Cereb Cortex ; 33(9): 5547-5556, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36424865

RESUMEN

Neurological soft signs (NSS) are minor deviations in motor performance. During childhood and adolescence, NSS are examined for functional motor phenotyping to describe development, to screen for comorbidities, and to identify developmental vulnerabilities. Here, we investigate underlying brain structure alterations in association with NSS in physically trained adolescents. Male adolescent athletes (n = 136, 13-16 years) underwent a standardized neurological examination including 28 tests grouped into 6 functional clusters. Non-optimal performance in at least 1 cluster was rated as NSS (NSS+ group). Participants underwent T1- and diffusion-weighted magnetic resonance imaging. Cortical volume, thickness, and local gyrification were calculated using Freesurfer. Measures of white matter microstructure (Free-water (FW), FW-corrected fractional anisotropy (FAt), axial and radial diffusivity (ADt, RDt)) were calculated using tract-based spatial statistics. General linear models with age and handedness as covariates were applied to assess differences between NSS+ and NSS- group. We found higher gyrification in a large cluster spanning the left superior frontal and parietal areas, and widespread lower FAt and higher RDt compared with the NSS- group. This study shows that NSS in adolescents are associated with brain structure alterations. Underlying mechanisms may include alterations in synaptic pruning and axon myelination, which are hallmark processes of brain maturation.


Asunto(s)
Imagen por Resonancia Magnética , Sustancia Blanca , Humanos , Masculino , Adolescente , Imagen por Resonancia Magnética/métodos , Encéfalo , Sustancia Blanca/patología , Imagen de Difusión por Resonancia Magnética , Examen Neurológico
6.
Hum Brain Mapp ; 44(6): 2465-2478, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744628

RESUMEN

The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.


Asunto(s)
Plexo Coroideo , Trastornos Psicóticos , Humanos , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/patología , Reproducibilidad de los Resultados , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Imagen por Resonancia Magnética , Encéfalo/patología
7.
Psychol Med ; 53(10): 4707-4719, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35796024

RESUMEN

BACKGROUND: While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS: Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS: Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS: We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Sustancia Blanca , Adulto , Masculino , Humanos , Femenino , Adolescente , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Encéfalo/patología
8.
Mol Psychiatry ; 27(9): 3719-3730, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982257

RESUMEN

Cognitive deficits are among the best predictors of real-world functioning in schizophrenia. However, our understanding of how cognitive deficits relate to neuropathology and clinical presentation over the disease lifespan is limited. Here, we combine multi-site, harmonized cognitive, imaging, demographic, and clinical data from over 900 individuals to characterize a) cognitive deficits across the schizophrenia lifespan and b) the association between cognitive deficits, clinical presentation, and white matter (WM) microstructure. Multimodal harmonization was accomplished using T-scores for cognitive data, previously reported standardization methods for demographic and clinical data, and an established harmonization method for imaging data. We applied t-tests and correlation analysis to describe cognitive deficits in individuals with schizophrenia. We then calculated whole-brain WM fractional anisotropy (FA) and utilized regression-mediation analyses to model the association between diagnosis, FA, and cognitive deficits. We observed pronounced cognitive deficits in individuals with schizophrenia (p < 0.006), associated with more positive symptoms and medication dosage. Regression-mediation analyses showed that WM microstructure mediated the association between schizophrenia and language/processing speed/working memory/non-verbal memory. In addition, processing speed mediated the influence of diagnosis and WM microstructure on the other cognitive domains. Our study highlights the critical role of cognitive deficits in schizophrenia. We further show that WM is crucial when trying to understand the role of cognitive deficits, given that it explains the association between schizophrenia and cognitive deficits (directly and via processing speed).


Asunto(s)
Trastornos del Conocimiento , Esquizofrenia , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Esquizofrenia/patología , Imagen de Difusión Tensora , Trastornos del Conocimiento/complicaciones , Anisotropía , Cognición , Encéfalo/patología
9.
Mol Psychiatry ; 26(9): 5357-5370, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33483689

RESUMEN

White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.


Asunto(s)
Esquizofrenia , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Demografía , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen
10.
Hum Brain Mapp ; 42(14): 4658-4670, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34322947

RESUMEN

Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification.


Asunto(s)
Imagen de Difusión Tensora/normas , Aprendizaje Automático , Esquizofrenia/clasificación , Esquizofrenia/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Medicina de Precisión , Valor Predictivo de las Pruebas , Esquizofrenia/patología , Sustancia Blanca/patología , Adulto Joven
11.
Neurosci Biobehav Rev ; 159: 105581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354871

RESUMEN

The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.


Asunto(s)
Trastorno Bipolar , Disfunción Cognitiva , Esquizofrenia , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
12.
IEEE Trans Med Imaging ; 43(3): 1191-1202, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37943635

RESUMEN

Parcellation of anatomically segregated cortical and subcortical brain regions is required in diffusion MRI (dMRI) analysis for region-specific quantification and better anatomical specificity of tractography. Most current dMRI parcellation approaches compute the parcellation from anatomical MRI (T1- or T2-weighted) data, using tools such as FreeSurfer or CAT12, and then register it to the diffusion space. However, the registration is challenging due to image distortions and low resolution of dMRI data, often resulting in mislabeling in the derived brain parcellation. Furthermore, these approaches are not applicable when anatomical MRI data is unavailable. As an alternative we developed the Deep Diffusion Parcellation (DDParcel), a deep learning method for fast and accurate parcellation of brain anatomical regions directly from dMRI data. The input to DDParcel are dMRI parameter maps and the output are labels for 101 anatomical regions corresponding to the FreeSurfer Desikan-Killiany (DK) parcellation. A multi-level fusion network leverages complementary information in the different input maps, at three network levels: input, intermediate layer, and output. DDParcel learns the registration of diffusion features to anatomical MRI from the high-quality Human Connectome Project data. Then, to predict brain parcellation for a new subject, the DDParcel network no longer requires anatomical MRI data but only the dMRI data. Comparing DDParcel's parcellation with T1w-based parcellation shows higher test-retest reproducibility and a higher regional homogeneity, while requiring much less computational time. Generalizability is demonstrated on a range of populations and dMRI acquisition protocols. Utility of DDParcel's parcellation is demonstrated on tractography analysis for fiber tract identification.


Asunto(s)
Conectoma , Aprendizaje Profundo , Humanos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Conectoma/métodos
13.
Brain Imaging Behav ; 18(3): 555-565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38270836

RESUMEN

On average, healthy older adults prefer positive over neutral or negative stimuli. This positivity bias is related to memory and attention processes and is linked to the function and structure of several interconnected brain areas. However, the relationship between the positivity bias and white matter integrity remains elusive. The present study examines how white matter organization relates to the degree of the positivity bias among older adults. We collected imaging and behavioral data from 25 individuals (12 females, 13 males, and a mean age of 77.32). Based on a functional memory task, we calculated a Pos-Neg score, reflecting the memory for positively valenced information over negative information, and a Pos-Neu score, reflecting the memory for positively valenced information over neutral information. Diffusion-weighted magnetic resonance imaging data were processed using Tract-Based Spatial Statistics. We performed two non-parametric permutation tests to correlate whole brain white matter integrity and the Pos-Neg and Pos-Neu scores while controlling for age, sex, and years of education. We observed a statistically significant positive association between the Pos-Neu score and white matter integrity in multiple brain connections, mostly frontal. The results did not remain significant when including verbal episodic memory as an additional covariate. Our study indicates that the positivity bias in memory in older adults is associated with more organized white matter in the connections of the frontal brain. While these frontal areas are critical for memory and executive processes and have been related to pathological aging, more extensive studies are needed to fully understand their role in the positivity bias and the potential for therapeutic interventions.


Asunto(s)
Encéfalo , Sustancia Blanca , Humanos , Masculino , Femenino , Anciano , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Anciano de 80 o más Años , Envejecimiento/fisiología , Memoria/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Pruebas Neuropsicológicas , Emociones/fisiología , Atención/fisiología , Vías Nerviosas/diagnóstico por imagen , Imagen de Difusión Tensora/métodos
14.
Neuropsychopharmacology ; 49(7): 1140-1150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431757

RESUMEN

Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.


Asunto(s)
Hipocampo , Metaloproteinasa 9 de la Matriz , Trastornos Psicóticos , Humanos , Metaloproteinasa 9 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/metabolismo , Masculino , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Femenino , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Trastornos Psicóticos/fisiopatología , Adulto , Adulto Joven , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/patología , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética
15.
Front Neurol ; 15: 1360424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882690

RESUMEN

Background: Intimate partner violence (IPV) perpetration is highly prevalent among veterans. Suggested risk factors of IPV perpetration include combat exposure, post-traumatic stress disorder (PTSD), depression, alcohol use, and mild traumatic brain injury (mTBI). While the underlying brain pathophysiological characteristics associated with IPV perpetration remain largely unknown, previous studies have linked aggression and violence to alterations of the limbic system. Here, we investigate whether IPV perpetration is associated with limbic microstructural abnormalities in military veterans. Further, we test the effect of potential risk factors (i.e., PTSD, depression, substance use disorder, mTBI, and war zone-related stress) on the prevalence of IPV perpetration. Methods: Structural and diffusion-weighted magnetic resonance imaging (dMRI) data were acquired from 49 male veterans of the Iraq and Afghanistan wars (Operation Enduring Freedom/Operation Iraqi Freedom; OEF/OIF) of the Translational Research Center for TBI and Stress Disorders (TRACTS) study. IPV perpetration was assessed using the psychological aggression and physical assault sub-scales of the Revised Conflict Tactics Scales (CTS2). Odds ratios were calculated to assess the likelihood of IPV perpetration in veterans with either of the following diagnoses: PTSD, depression, substance use disorder, or mTBI. Fractional anisotropy tissue (FA) measures were calculated for limbic gray matter structures (amygdala-hippocampus complex, cingulate, parahippocampal gyrus, entorhinal cortex). Partial correlations were calculated between IPV perpetration, neuropsychiatric symptoms, and FA. Results: Veterans with a diagnosis of PTSD, depression, substance use disorder, or mTBI had higher odds of perpetrating IPV. Greater war zone-related stress, and symptom severity of PTSD, depression, and mTBI were significantly associated with IPV perpetration. CTS2 (psychological aggression), a measure of IPV perpetration, was associated with higher FA in the right amygdala-hippocampus complex (r = 0.400, p = 0.005). Conclusion: Veterans with psychiatric disorders and/or mTBI exhibit higher odds of engaging in IPV perpetration. Further, the more severe the symptoms of PTSD, depression, or TBI, and the greater the war zone-related stress, the greater the frequency of IPV perpetration. Moreover, we report a significant association between psychological aggression against an intimate partner and microstructural alterations in the right amygdala-hippocampus complex. These findings suggest the possibility of a structural brain correlate underlying IPV perpetration that requires further research.

16.
J Affect Disord ; 361: 768-777, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897303

RESUMEN

BACKGROUND: Military veterans with posttraumatic stress disorder (PTSD) commonly experience posttraumatic guilt. Guilt over commission or omission evolves when responsibility is assumed for an unfortunate outcome (e.g., the death of a fellow combatant). Survivor guilt is a state of intense emotional distress experienced by the weight of knowing that one survived while others did not. METHODS: This study of the Translational Research Center for TBI and Stress Disorders (TRACTS) analyzed structural and diffusion-weighted magnetic resonance imaging data from 132 male Iraq/Afghanistan veterans with PTSD. The Clinician-Administered PTSD Scale for DSM-IV (CAPS-IV) was employed to classify guilt. Thirty (22.7 %) veterans experienced guilt over acts of commission or omission, 34 (25.8 %) experienced survivor guilt, and 68 (51.5 %) had no posttraumatic guilt. White matter microstructure (fractional anisotropy, FA), cortical thickness, and cortical volume were compared between veterans with guilt over acts of commission or omission, veterans with survivor guilt, and veterans without guilt. RESULTS: Veterans with survivor guilt had significantly lower white matter FA compared to veterans who did not experience guilt (p < .001), affecting several regions of major white matter fiber bundles. There were no significant differences in white matter FA, cortical thickness, or volumes between veterans with guilt over acts of commission or omission and veterans without guilt (p > .050). LIMITATIONS: This cross-sectional study with exclusively male veterans precludes inferences of causality between the studied variables and generalizability to the larger veteran population that includes women. CONCLUSION: Survivor guilt may be a particularly impactful form of posttraumatic guilt that requires specific treatment efforts targeting brain health.


Asunto(s)
Culpa , Trastornos por Estrés Postraumático , Sobrevivientes , Veteranos , Sustancia Blanca , Humanos , Masculino , Trastornos por Estrés Postraumático/psicología , Trastornos por Estrés Postraumático/patología , Veteranos/psicología , Adulto , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Sobrevivientes/psicología , Campaña Afgana 2001- , Guerra de Irak 2003-2011 , Imagen de Difusión por Resonancia Magnética , Persona de Mediana Edad
17.
J Alzheimers Dis ; 95(4): 1427-1448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694363

RESUMEN

BACKGROUND: Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are common in Veterans and linked to behavioral disturbances, increased risk of cognitive decline, and Alzheimer's disease. OBJECTIVE: We studied the synergistic effects of PTSD and TBI on behavioral, cognitive, and neuroimaging measures in Vietnam war Veterans. METHODS: Data were acquired at baseline and after about one-year from male Veterans categorized into: PTSD, TBI, PTSD+TBI, and Veteran controls without PTSD or TBI. We applied manual tractography to examine white matter microstructure of three fiber tracts: uncinate fasciculus (N = 91), cingulum (N = 87), and inferior longitudinal fasciculus (N = 95). ANCOVAs were used to compare Veterans' baseline behavioral and cognitive functioning (N = 285), white matter microstructure, amyloid-ß (N = 230), and tau PET (N = 120). Additional ANCOVAs examined scores' differences from baseline to follow-up. RESULTS: Veterans with PTSD and PTSD+TBI, but not Veterans with TBI only, exhibited poorer behavioral and cognitive functioning at baseline than controls. The groups did not differ in baseline white matter, amyloid-ß, or tau, nor in behavioral and cognitive functioning, and tau accumulation change. Progression of white matter abnormalities of the uncinate fasciculus in Veterans with PTSD compared to controls was observed; analyses in TBI and PTSD+TBI were not run due to insufficient sample size. CONCLUSIONS: PTSD and PTSD+TBI negatively affect behavioral and cognitive functioning, while TBI does not contribute independently. Whether progressive decline in uncinate fasciculus microstructure in Veterans with PTSD might account for cognitive decline should be further studied. Findings did not support an association between PTSD, TBI, and Alzheimer's disease pathology based on amyloid and tau PET.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Trastornos por Estrés Postraumático , Veteranos , Humanos , Masculino , Trastornos por Estrés Postraumático/complicaciones , Trastornos por Estrés Postraumático/diagnóstico por imagen , Enfermedad de Alzheimer/complicaciones , Vietnam , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Cognición , Neuroimagen , Péptidos beta-Amiloides
18.
Epilepsia Open ; 8(3): 1111-1122, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37469213

RESUMEN

OBJECTIVE: To investigate how the presence/side of hippocampal sclerosis (HS) are related to the white matter structure of cingulum bundle (CB), arcuate fasciculus (AF), and inferior longitudinal fasciculus (ILF) in mesial temporal lobe epilepsy (MTLE). METHODS: We acquired diffusion-weighted magnetic resonance imaging (MRI) from 86 healthy and 71 individuals with MTLE (22 righ-HS; right-HS, 34 left-HS; left-HS, and 15 nonlesional MTLE). We utilized two-tensor tractography and fiber clustering to compare fractional anisotropy (FA) of each side/tract between groups. Additionally, we examined the association between FA and nonverbal (WMS-R) and verbal (WMS-R, RAVLT codification) memory performance for MTLE individuals. RESULTS: White matter abnormalities depended on the side and presence of HS. The left-HS demonstrated widespread abnormalities for all tracts, the right-HS showed lower FA for ipsilateral tracts and the nonlesional MTLE group did not differ from healthy individuals. Results indicate no differences in verbal/nonverbal memory performance between the groups, but trend-level associations between higher FA of visual memory and the left CB (r = 0.286, P = 0.018), verbal memory (RAVLT) and -left CB (r = 0.335, P = 0.005), -right CB (r = 0.286, P = 0.016), and -left AF (r = 0.287, P = 0.017). SIGNIFICANCE: Our results highlight that the presence and side of HS are crucial to understand the pathophysiology of MTLE. Specifically, left-sided HS seems to be related to widespread bilateral white matter abnormalities. Future longitudinal studies should focus on developing diagnostic and treatment strategies dependent on HS's presence/side.


Asunto(s)
Epilepsia del Lóbulo Temporal , Esclerosis del Hipocampo , Sustancia Blanca , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión por Resonancia Magnética , Hipocampo/diagnóstico por imagen , Hipocampo/patología
19.
Schizophr Bull ; 49(6): 1614-1624, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37163675

RESUMEN

BACKGROUND AND HYPOTHESIS: Cognitive impairment is a hallmark of schizophrenia, but no effective treatment is available to date. The underlying pathophysiology includes disconnectivity between hippocampal and prefrontal brain regions. Supporting evidence comes from diffusion-weighted imaging studies that suggest abnormal organization of frontotemporal white matter pathways in schizophrenia. STUDY DESIGN: Here, we hypothesize that in schizophrenia, deficient maturation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes substantially contributes to abnormal frontotemporal macro- and micro-connectivity and subsequent cognitive deficits. STUDY RESULTS: Our postmortem studies indicate a reduced oligodendrocyte number in the cornu ammonis 4 (CA4) subregion of the hippocampus, and others have reported the same histopathological finding in the dorsolateral prefrontal cortex. Our series of studies on aerobic exercise training showed a volume increase in the hippocampus, specifically in the CA4 region, and improved cognition in individuals with schizophrenia. The cognitive effects were subsequently confirmed by meta-analyses. Cell-specific schizophrenia polygenic risk scores showed that exercise-induced CA4 volume increase significantly correlates with OPCs. From animal models, it is evident that early life stress and oligodendrocyte-related gene variants lead to schizophrenia-related behavior, cognitive deficits, impaired oligodendrocyte maturation, and reduced myelin thickness. CONCLUSIONS: Based on these findings, we propose that pro-myelinating drugs (e.g., the histamine blocker clemastine) combined with aerobic exercise training may foster the regeneration of myelin plasticity as a basis for restoring frontotemporal connectivity and cognition in schizophrenia.


Asunto(s)
Disfunción Cognitiva , Esquizofrenia , Animales , Humanos , Esquizofrenia/patología , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Disfunción Cognitiva/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología
20.
Res Sq ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37841868

RESUMEN

Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is thought to result from an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate is crucial, as volume reduction likely indicates an underlying neurodegenerative process. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the 33 individuals at CHR who developed psychosis (CHR-P) from the 127 individuals at CHR who did not (CHR-NP). At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in most brain areas, the CHR-P group demonstrated significantly accelerated iFW increase and volume reduction with time than the CHR-NP group. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes are thus an early pathology at the prodromal stage of psychosis that may be useful for early detection and a better mechanistic understanding of psychosis development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA