Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748026

RESUMEN

We studied the photoluminescence decay kinetics of three nanosized anatase TiO2 photocatalysts (particle diameter: 7, 25, or 200 nm) at the pico- and nanosecond timescales for elucidating the origin of the luminescence. Luminescence spectra from these photocatalysts obtained under steady-state excitation conditions comprised green luminescence that decayed on the picosecond timescale and red luminescence that persisted at the nanosecond timescale. Among the photocatalysts with different sizes, there were marked differences in the rate of luminescence decay at the picosecond timescale (<600 ps), although the spectral shapes were comparable. The similarity in the spectral shape indicated that self-trapped excitons (STEs) directly populated in the bulk of the particle by light excitation emit the luminescence in a picosecond timescale, and the difference in the rate of luminescence decay originated from the quenching at the particle surface. Furthermore, we theoretically considered excitation light intensity dependence on the quantum yield of the luminescence and found that the quenching reaction was not limited by the diffusion of the STEs but by the reaction at the particle surface. Both the spectral shape and time-evolution of the red luminescence from the deep trapped excitons in the nanosecond timescale varied among the photocatalysts, suggesting that the trap sites in different photocatalysts have different characteristics with respect to luminescence. Therefore, the relation between trap states and photocatalytic activity will be elucidated from the red luminescence study.

2.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38458194

RESUMEN

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Asunto(s)
Mano , Bulbo Raquídeo , Animales , Bulbo Raquídeo/fisiología , Médula Espinal/fisiología , Tacto , Primates , Corteza Somatosensorial/fisiología , Movimiento/fisiología
3.
ACS Appl Mater Interfaces ; 16(20): 26325-26339, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716494

RESUMEN

Mixed oxides of Rh-Cr (RhCrOx), containing Rh3+ and Cr3+ cations, are commonly used as cocatalysts for the hydrogen evolution reaction (HER) on particulate photocatalysts. The precise physicochemical mechanisms of the HER at the catalytic sites of these oxides are not well understood. In this study, model cocatalyst electrodes, composed of nanoparticulate RhCrOx, were fabricated to investigate the physicochemical mechanisms of the HER. Electroanalytical and X-ray photoelectron spectroscopic measurements revealed that nanoparticulate RhCrOx produces reduced Rh (Rh0) species by maintaining an electrode potential more negative than 0.03 V versus the reversible hydrogen electrode (VRHE). This results in significant enhancement of the HER activity. The catalytic activity for the HER stems from the reduced Rh species, and the inclusion of Cr3+ (CrOx) aided in the electron transfer process at the solid/liquid interface, resulting in a higher current density during the HER. To achieve a solar-to-hydrogen efficiency of over 3%, the conduction band minimum of the particulate photocatalyst should be positioned more negatively than -0.10 VRHE. Moreover, the formation of electron trap states at potentials more positive than 0.03 VRHE should be avoided. This study highlights the importance of understanding the catalytic sites on metal oxide cocatalysts. Moreover, it offers a design strategy for enhancing the efficiency of photocatalytic water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA