Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biochem ; 173(6): 447-457, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-36748338

RESUMEN

The interaction of the ß-coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid (N) protein with genomic RNA is initiated by specific RNA regions and subsequently induces the formation of a continuous polymer with characteristic structural units for viral formation. We hypothesized that oligomeric RNAs, whose sequences are absent in the 29.9-kb genome sequence of SARS-CoV-2, might affect RNA-N protein interactions. We identified two such hexameric RNAs, In-1 (CCGGCG) and G6 (GGGGGG), and investigated their effects on the small filamentous/droplet-like structures (< a few µm) of N protein-genomic RNA formed by liquid-liquid phase separation. The small N protein structures were sequence-specifically enhanced by In-1, whereas G6 caused them to coalesce into large droplets. Moreover, we found that a guanosine 12-mer (G12, GGGGGGGGGGGG) expelled preexisting genomic RNA from the small N protein structures. The presence of G12 with the genomic RNA suppressed the formation of the small N protein structures, and alternatively apparently altered phase separation to induce the formation of large droplets with unclear phase boundaries. We showed that the N-terminal RNA-binding domain is required for the stability of the small N protein structures. Our results suggest that G12 may be a strong inhibitor of the RNA-N protein interaction.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , ARN Viral/genética , ARN Viral/química , ARN Viral/metabolismo , Unión Proteica
2.
Sci Rep ; 13(1): 13486, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596270

RESUMEN

Tumor cells generally require large amounts of nucleotides, and thus activate de novo purine synthesis (dnPS). In the dnPS reactions, 10-formyltetrahydorofolate (10-fTHF) supplied by one-carbon metabolism is utilized as a formyl group donor. We focused on aldehyde dehydrogenase 1 family member L1 (ALDH1L1), which metabolizes 10-fTHF to tetrahydrofolate and whose expression is often attenuated in hepatocellular carcinoma (HCC). We generated ALDH1L1-expressing HuH-7 cells to perform metabolome analysis and found that intracellular levels of serine were reduced and glycine was increased. In addition, 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP), a dnPS intermediate, accumulated due to the consumption of 10-fTHF by ALDH1L1, which inhibited ZMP formylation. Importantly, ALDH1L1-expressing cells showed reduced ZMP sensitivity and higher mitochondrial activity. The suppression of mitochondrial serine catabolism by ALDH1L1 expression was speculated to be closely related to this phenotype. Gene set enrichment analysis utilizing The Cancer Genome Atlas data revealed that genes related to oxidative phosphorylation were enriched in HCC patients with high ALDH1L1 expression. Moreover, drug sensitivity data analysis demonstrated that HCC cell lines with low expression of ALDH1L1 were sensitive to ZMP and cordycepin, a structural analog of ZMP and AMP. Our study revealed that ZMP and AMP analogs might be effective in the pharmacotherapy of HCC patients with low expression of ALDH1L1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Ribonucleótidos/farmacología , Carbono
3.
Sci Rep ; 8(1): 8471, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855514

RESUMEN

CRISPR/Cas9 has emerged in various organisms as a powerful technology for targeted gene knockout; however, no reports of editing the Dictyostelium genome efficiently using this system are available. We describe here the application of CRISPR/Cas9-mediated gene modification in Dictyostelium. The endogenous tRNA-processing system for expressing sgRNA was approximately 10 times more effective than the commonly used U6 promoter. The resulting sgRNA affected the sub-nuclear localisation of Cas9, indicating that the expression level of sgRNA was sufficiently high to form Cas9 and sgRNA complexes within the nucleus. The all-in-one vector containing Cas9 and sgRNA was transiently expressed to generate mutants in five PI3K genes. Mutation detective PCR revealed the mutagenesis frequency of the individual genes to be between 72.9% and 100%. We confirmed that all five targeting loci in the four independent clones had insertion/deletion mutations in their target sites. Thus, we show that the CRISPR/Cas9 system can be used in Dictyostelium cells to enable efficient genome editing of multiple genes. Since this system utilises transient expression of the all-in-one vector, it has the advantage that the drug resistance cassette is not integrated into the genome and simple vector construction, involving annealing two oligo-DNAs.


Asunto(s)
Sistemas CRISPR-Cas/genética , Dictyostelium/genética , Edición Génica/métodos , Genoma de Protozoos , Proteínas Protozoarias/genética , Secuencia de Bases , Dictyostelium/metabolismo , Frecuencia de los Genes , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Mutagénesis , Fosfatidilinositol 3-Quinasas/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA