Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurochem ; 156(6): 834-847, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33460120

RESUMEN

PRMT1, a major arginine methyltransferase, plays critical roles in transcription, DNA damage response, and cell proliferation. Although we have previously discovered the crucial roles of PRMT1 for oligodendrocyte lineage progression in the central nervous system of neural stem cell-specific PRMT1 conditional knockout (PRMT1-CKO) mice, the context of other glial cell states that may cause the hypomyelination phenotype in PRMT1-CKO mice has not been explored so far. Here, we performed RNA-seq of the neonatal cortices of PRMT1-CKO mice to reveal overall gene expression changes and show the up-regulation of inflammatory signaling which is generally mediated by astrocytes and microglia in advance of the myelination defects. In particular, qRT-PCR analyses revealed Interleukin-6 (Il-6), a major central nervous system cytokine, was dramatically increased in the PRMT1-CKO brains. The gene expression changes led to augmentation of glial fibrillary acidic protein and Vimentin protein levels in PRMT1-CKO mice, showing severe reactive astrogliosis after birth. We further show that IBA1-positive and CD68-positive activated microglia were increased in PRMT1-CKO mice, in spite of intact Prmt1 gene expression in purified microglia from the mutant mice. Our results indicate that PRMT1 loss in the neural stem cell lineage causes disruptive changes in all glial types perturbing postnatal brain development and myelination.


Asunto(s)
Astrocitos , Encéfalo/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Microglía , Proteína-Arginina N-Metiltransferasas/genética , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Encefalitis/fisiopatología , Femenino , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Vaina de Mielina , Células-Madre Neurales/metabolismo , Embarazo , ARN Interferente Pequeño/farmacología , Transducción de Señal
2.
Dev Neurosci ; 37(3): 232-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25896276

RESUMEN

We have generated a Xenopus laevis transgenic line, MBP-GFP-NTR, allowing conditional ablation of myelin-forming oligodendrocytes. In this transgenic line the transgene is driven by the proximal portion of the myelin basic protein regulatory sequence, specific to mature oligodendrocytes. The transgene protein is formed by the green fluorescent protein reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. The NTR enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Ablation of oligodendrocytes by MTZ treatment of the tadpole induced demyelination, and here we show that myelin debris are subsequently eliminated by microglial cells. After cessation of MTZ treatment, remyelination proceeded spontaneously. We questioned the origin of remyelinating cells. Our data suggest that Sox10+ oligodendrocyte precursor cells (OPCs), which are already present in the optic nerve prior to the experimentally induced demyelination, are responsible for remyelination, and this required only minimal (if any) cell division of OPCs. © 2015 S. Karger AG, Basel.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Microglía/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Oligodendroglía/metabolismo , Animales , Animales Modificados Genéticamente , Antiinfecciosos/farmacología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Metronidazol/farmacología , Células-Madre Neurales , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Xenopus laevis
3.
J Neurosci ; 32(48): 17172-85, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197710

RESUMEN

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Oligodendroglía/metabolismo , Rombencéfalo/metabolismo , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Rombencéfalo/embriología , Factores de Transcripción/metabolismo
4.
J Neurosci ; 32(37): 12885-95, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973012

RESUMEN

Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the CNS. In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair.


Asunto(s)
Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Regeneración Nerviosa/fisiología , Xenopus laevis/anatomía & histología , Xenopus laevis/fisiología , Animales , Humanos
5.
Am J Physiol Cell Physiol ; 298(3): C635-46, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042730

RESUMEN

Rett syndrome caused by mutations in methyl-CpG-binding protein 2 (Mecp2) gene shows abnormalities in autonomic functions in which brain stem norepinephrinergic systems play an important role. Here we present systematic comparisons of intrinsic membrane properties of locus coeruleus (LC) neurons between Mecp2(-/Y) and wild-type (WT) mice. Whole cell current clamp was performed in brain slices of 3- to 4-wk-old mice. Mecp2(-/Y) neurons showed stronger inward rectification and had shorter time constant than WT cells. The former was likely due to overexpression of inward rectifier K(+) (K(ir))4.1 channel, and the latter was attributable to the smaller cell surface area. The action potential duration was prolonged in Mecp2(-/Y) cells with an extended rise time. This was associated with a significant reduction in the voltage-activated Na(+) current density. After action potentials, >60% Mecp2(-/Y) neurons displayed fast and medium afterhyperpolarizations (fAHP and mAHP), while nearly 90% WT neurons showed only mAHP. The mAHP amplitude was smaller in Mecp2(-/Y) neurons. The firing frequency was higher in neurons with mAHP, and the frequency variation was greater in cells with both fAHP and mAHP in Mecp2(-/Y) mice. Small but significant differences in spike frequency adaptation and delayed excitation were found in Mecp2(-/Y) neurons. These results indicate that there are several electrophysiological abnormalities in LC neurons of Mecp2(-/Y) mice, which may contribute to the dysfunction of the norepinephrine system in Rett syndrome.


Asunto(s)
Fibras Adrenérgicas/metabolismo , Membrana Celular/metabolismo , Locus Coeruleus/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Neuronas/metabolismo , Síndrome de Rett/metabolismo , Potenciales de Acción , Animales , Impedancia Eléctrica , Técnicas In Vitro , Cinética , Locus Coeruleus/fisiopatología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/metabolismo , Norepinefrina/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Sodio/metabolismo , Canales de Sodio/metabolismo
6.
Methods Mol Biol ; 1936: 169-183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820899

RESUMEN

In vitro culture systems have been invaluable in understanding the cell biology of oligodendrocytes; the monoculture of primary oligodendroglia has helped characterize different stages of oligodendrocyte maturation in the absence of neurons. However, oligodendrocyte monocultures do not model the interaction of oligodendrocytes with neurons where they form myelin wraps. To circumvent this problem, coculture systems were developed; oligodendrocytes and neurons are cultured together, facilitating the study of myelin wraps and the interaction between the two cell types. However, this coculture system also has limitations, as other cells are not present and it does not represent the three-dimensional multicellular structure seen in vivo. Some of these limitations are resolved by using ex vivo slice cultures to serve as a three-dimensional culture system that is more similar to in vivo and can be used to study myelination, demyelination, and remyelination, over extended periods of time. Slice cultures are economical compared to in vivo studies and live imaging using them is less challenging. The focus of this chapter is to describe how to culture brain and spinal cord slices of mice and use them to study myelination, demyelination, and remyelination.


Asunto(s)
Encéfalo/citología , Técnicas de Cultivo de Célula/métodos , Vaina de Mielina/metabolismo , Médula Espinal/citología , Animales , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Enfermedades Desmielinizantes , Ratones , Neuronas/citología , Oligodendroglía/citología , Remielinización
7.
Acta Biomater ; 97: 216-229, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31425890

RESUMEN

The pathology of multiple sclerosis (MS) is typified by focal demyelinated areas of the brain and spinal cord, which results in axonal degeneration and atrophy. Although the field has made much progress in developing immunomodulatory therapies to reduce the occurrence of these focal lesions, there is a conspicuous lack of licensed effective therapies to reduce axonal degeneration or promote repair. Remyelination, carried out by oligodendrocytes, does occur in MS, and is protective against axonal degeneration. Unfortunately, remyelination is not very efficient, and ultimately fails and so there is a research focus to generate new therapeutics to enhance remyelination leading to neuroprotection. To develop these therapies, we need preclinical models that well reflect remyelination in MS. We have previously characterized an ex vivo model that uses lysophosphatidylcholine (LPC) to cause acute and global demyelination of tissue slices, followed by spontaneous remyelination, which has been widely used as a surrogate for in vivo rodent models of demyelination. However, this ex vivo model lacks the focal demyelinated lesions seen in MS, surrounded by normal tissue from which the repairing oligodendrocytes are derived. Therefore, to improve the model, we have developed and characterized small macroporous cryogel scaffolds for controlled/regional delivery of LPC with diameters of either 0.5, 1 or 2 mm. Placement of LPC loaded scaffolds adjacent to ex vivo cultured mouse brain and spinal cord slices induced focal areas of demyelination in proximity to the scaffold. To the best of our knowledge, this is the first such report of spatial mimicry of the in vivo condition in ex vivo tissue culture. This will allow not only the investigation into focal lesions, but also provides a better platform technology with which to test remyelination-promoting therapeutics. STATEMENT OF SIGNIFICANCE: This manuscript is the first report of using macroporous hydrogels (cryogels) as a research tool for lysophosphatidylcholine (LPC) delivery, in order to create an ex vivo model of focal demyelination in the brain and spinal cord, which is of great relevance to multiple sclerosis research. Here, we transform an existing ex vivo model of demyelination by delivering LPC to focal regions of brain and spinal cord slice cultures. We have developed an easy-to-handle cylindrical and macroporous PEG-based sponge-like scaffold material (cryogel) that can deliver LPC only to a small area of the slice. Such cryogels are ideal as a delivery system in this culture model as they exhibit a soft but robust nature, with high mechanical deformability in their dry and swollen state, with no need to stay permanently hydrated. In addition, the synthesis of these cryogels is simple and easy to reproduce via photochemical cryopolymerisation using a PEG-diacrylate monomer and a photoinitiator, which are both commercially available. This more accurate model of demyelination will not only allow researchers to gain a better understanding of the CNS remyelination process in diseases such as MS, but also provides a platform technology, which could be utilized to screen and test pro-remyelination compounds which may help to find new therapeutics for progressive MS.


Asunto(s)
Encéfalo , Criogeles , Sistemas de Liberación de Medicamentos , Lisofosfatidilcolinas , Modelos Neurológicos , Esclerosis Múltiple , Animales , Encéfalo/metabolismo , Encéfalo/patología , Criogeles/química , Criogeles/farmacocinética , Criogeles/farmacología , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/farmacocinética , Lisofosfatidilcolinas/farmacología , Ratones , Microdisección , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA