Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Funct Integr Genomics ; 24(5): 185, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373775

RESUMEN

Elevated temperatures during grain filling stage, exceeding the optimal range by 3-4 °C, not only results in a substantial yield reduction in wheat by 10-50% but activates disease and insect infestation. In this research, we introduced heat-tolerant MYB36 and APX-1 gene cassettes into wheat, employing an efficient Agrobacterium mediated transformation protocol, demonstrating higher transformation efficiency. The study encompassed the assembly of MYB36 and APX-1 gene cassettes, and confirmation of gene products in Agrobacterium, followed by the transformation of the MYB36 and APX-1 genes into wheat explants. We were able to select transgenic plant with various combinations. The transgenic plants with APX-1 gene alone produced medium sized grain and spike whereas with both APX-1 and MYB36 genes expressed individually under SPS and rd29a promoter respectively showed good tolerance to heat at 32oC at grain filling/milking stage and produced relatively bold grains. While non-transgenic plants grains were wrinkled with thin spike showing susceptibility to heat. This research contributes to the broader scientific understanding of plant stress responses and the combined effectiveness of MYB36 and APX-1 genes in crop improvement without disturbing normal nutritional values. The gene integration can serve as a valuable tool in breeding programs aimed at developing heat-tolerant wheat varieties. These findings also advance our comprehension of the functions of heat-induced genes and lay the foundation for selecting optimal candidates for in-depth functional studies of heat-responsive MYB36 and APX-1 genes in wheat.


Asunto(s)
Proteínas de Plantas , Plantas Modificadas Genéticamente , Termotolerancia , Factores de Transcripción , Triticum , Triticum/genética , Termotolerancia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Calor
2.
BMC Plant Biol ; 24(1): 984, 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39425086

RESUMEN

BACKGROUND: Soil pollution by petroleum hydrocarbons (PHCs) reduces yield by changing the physico-chemical properties of soil and plants due to PHCs' biotoxicity and persistence. Thus, removing PHCs from the soil is crucial for ecological sustainability. Microbes-assisted phytoremediation is an economical and eco-friendly solution. The current work aimed to develop and use bacterial consortia (BC) for PHCs degradation and plant growth enhancement in hydrocarbon-contaminated soil. Initially, the enriched microbial cultures (that were prepared from PHCs-contaminated soils from five distinct regions) were obtained via screening through microcosm experiments. Afterward, two best microbial cultures were tested for PHCs degradation under various temperature and pH ranges. After culture optimization, isolation and characterization of bacterial strains were done to construct two BC. These constructed BC were tested in a pot experiment for hydrocarbons degradation and chickpea growth in PHCs contaminated soil. RESULTS: Findings revealed that PHCs exerted significant phytotoxic effects on chickpea growth and physiology when cultivated in PHCs contaminated soil, reducing agronomic and physiological traits by 13-29% and 12-43%, respectively. However, in the presence of BC, the phytotoxic impacts of PHCs on chickpea plants were reduced, resulting in up to 24 - 35% improvement in agronomic and physiological characteristics as compared to un-inoculated contaminated controls. Furthermore, the bacterial consortia boosted chickpea's nutritional absorption and antioxidant mechanism. Most importantly, chickpea plants phytoremediated 52% of the initial PHCs concentration; however, adding BC1 and BC2 with chickpea plants further increased this removal and remediated 74% and 80% of the initial PHCs concentration, respectively. CONCLUSION: In general, BC2 outperformed BC1 (with few exceptions) in promoting plant growth and PHCs elimination. Therefore, using multi-trait BC for PHCs degradation and plant growth improvement under PHCs stress may be an efficient and environmentally friendly strategy to deal with PHCs pollution and toxicity.


Asunto(s)
Biodegradación Ambiental , Cicer , Hidrocarburos , Consorcios Microbianos , Microbiología del Suelo , Contaminantes del Suelo , Cicer/microbiología , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Bacterias/metabolismo , Rizosfera , Petróleo/metabolismo
3.
BMC Plant Biol ; 24(1): 820, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215226

RESUMEN

Green synthesis is an easy, safe, and environmentally beneficial nanoparticle creation method. It is a great challenge to simultaneously improve the capping and stabilizing agent carrier separation efficiency of photocatalysts. Herein, Zn-doped Titanium dioxide (TiO2) nanoparticles with high exposure of 360 nm using a UV/visible spectrophotometer were prepared via a one-step hydrothermal decomposition method. A detailed analysis reveals that the electronic structures were modulated by Zn doping; thus, the responsive wavelength was extended to 600 nm, which effectively improved the visible light absorption of TiO2. We have optimized the different parameters like concentration, time, and temperature. The peak for TiO2 is located at 600 cm-1 in FTIR. A scanning electron microscope revealed that TiO2 has a definite shape and morphology. The synthesized Zn-doped TiO2NPs were applied against various pathogens to study their anti-bacterial potentials. The anti-bacterial activity of Zn-doped TiO2 has shown robust against two gram-ve bacteria (Salmonella and Escherichia coli) and two gram + ve bacteria (Staphylococcus epidermidis and Staphylococcus aureus). Synthesized Zn-doped TiO2 has demonstrated strong antifungal efficacy against a variety of fungi. Moreover, doping TiO2 nanoparticles with metal oxide greatly improves their characteristics; as a result, doped metal oxide nanoparticles perform better than doped and un-doped metal oxide nanoparticles. Compared to pure TiO2, Zn-doped TiO2 nanoparticles exhibit considerable applications including antimicrobial treatment and water purification.


Asunto(s)
Titanio , Zanthoxylum , Zinc , Titanio/química , Zinc/química , Zinc/farmacología , Zanthoxylum/química , Tecnología Química Verde , Nanopartículas del Metal/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Antifúngicos/química
4.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760709

RESUMEN

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Asunto(s)
Estiércol , Aves de Corral , Salinidad , Suelo , Triticum , Triticum/crecimiento & desarrollo , Suelo/química , Animales , Microbiología del Suelo , Plantones/crecimiento & desarrollo , Fertilizantes/análisis , Alcaligenes faecalis/crecimiento & desarrollo
5.
J Fluoresc ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538961

RESUMEN

Dye solubilization in microemulsion based on Cetyltrimethylammonium bromide (CTAB) and its modified forms (counter-anions based upon Zn2+, Cu2+ and Fe3+) is comparatively innovative and not explored in existing literature. Here, surfactant with modified counterions (SMCs) were used to study the effects of metal chlorides (ZnCl2, CuCl2 and FeCl3) modifications on the comparative solubilization of Rhodamine-B (RB) by Cetyltrimethylammonium bromide (CTAB) and its modified forms. The solubility of RB in different microemulsions were studied using UV-Visible spectroscopy and phase diagrams of CTAB with modified counter ions CTA+[ZnCl2.Br]- named as CZN-1, CTA+[CuCl2.Br]- named as CCU-1 and CTA+[FeCl3.Br]- named as CFE-1 based upon surfactant with modified counter ions (SMCs). Four different points in microemulsion region of phase diagram were selected with different percentage composition of Smix (surfactant and co-surfactant), oil and RB (taken as water component). The interaction of RB, CCU-1, CFE-1 and CZN-1 within microemulsion environment were studied using Fluorescence spectroscopy. Emission spectra of RB in CCU-1 and CFE-1 based microemulsion confirmed that RB formed complexes with Cu and Fe ions. It was also found that RB was less soluble in CTAB based microemulsion as compared to microemulsions based on SMCs. This novel research study will expose new path for future research work related to microemulsion.

6.
J Environ Manage ; 295: 113076, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153587

RESUMEN

Ecosystem degradation as a result of coal mining is a common phenomenon in various regions of the world, especially in arid and semi-arid zones. The implementation of appropriate revegetation techniques can be considered crucial to restore these degraded areas. In this regard, the additions of spent mushroom compost (SMC) and wood biochar (WB) to infertile and degraded soils have been reported to enhance soil fertility and plant growth under water (W) deficit conditions. However, the combined application of W, SMC and WB to coal mine degraded soils, to promote Althaea rosea growth and facilitate subsequent restoration, has not been explored yet. Hence, in the current study a pot experiment was carried out by growing A. rosea on coal mine spoils to assess the influence of different doses of W, SMC and WB on its morpho-physiological and biochemical growth responses. The results indicated that several plant growth traits like plant height, root length and dry biomass significantly improved with moderate W-SMC-WB doses. In addition, the simultaneous application of W-SMC-WB caused a significant decrease in hydrogen peroxide (H2O2) (by 7-56%), superoxide anion (O2●‒) (by 14-51%), malondialdehyde (MDA) (by 23-46%) and proline (Pro) contents (by 23-66%), as well as an increase in relative water content (by 10-27%), membrane stability index (by 2-24%), net photosynthesis rate (by 40-99%), total chlorophylls (by 43-113%) and carotenoids (by 31-115%), as compared to the control treatment. The addition of SMC and WB under low-W regime enhanced leaf water use efficiency, and soluble sugar content, also boosting the activity of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase in leaf tissues, thus reducing the oxidative stress, as proved by low levels of H2O2, O2●‒, MDA and Pro contents. Finest growth performance under optimum doses of W (60% field capacity), SMC (1.4%) and WB (0.8%) suggest that revegetation of A. rosea with the recommended W-SMC-WB doses would be a suitable and eco-friendly approach for ecological restoration in arid degraded areas.


Asunto(s)
Agaricales , Althaea , Compostaje , Carbón Orgánico , Carbón Mineral , Sequías , Ecosistema , Peróxido de Hidrógeno , Suelo , Agua , Madera
7.
J Environ Manage ; 277: 111388, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002812

RESUMEN

Land degradation due to soil salinity and sodicity is a serious concern in arid ecosystems. Despite the importance of conservation tillage in carbon sequestration and improving soil properties, its effect on saline-sodic soils under amendment application remains unknown. Therefore, the present study aimed to explore the combined effects of inorganic (sulfuric acid and gypsum) and organic (vermicompost) soil amendments and tillage systems (zero, reduced and deep tillage) on saline-sodic soil properties and wheat productivity. Deep tillage with vermicompost application significantly improved soil physical and chemical properties compared with control. Interestingly, integration between deep tillage and vermicompost decreased soil salinity and sodicity by 37% and 34%, respectively, compared with zero tillage and unamended soils. The application of vermicompost surpassed chemical amendments in the improvement of saline-sodic soils and consequently increased the growth and yield of wheat, provided that deep tillage was used as a suitable tillage system. Although deep tillage reduced soil organic carbon, application of vermicompost not only compensated this reduction, but also significantly increased soil organic carbon. This confirms the potential of combined deep tillage and vermicompost as a method for environmentally reclaiming saline-sodic soils.


Asunto(s)
Suelo , Triticum , Agricultura , Carbono , Secuestro de Carbono , Ecosistema
8.
Heliyon ; 10(1): e22960, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163208

RESUMEN

Citrus is a remarkable fruit crop, extremely sensitive to flooding conditions, which frequently trigger hypoxia stress and cause severe damage to citrus plants. Silicon nanoparticles (SiNPs) are beneficial and have the potential to overcome this problem. Therefore, the present study aimed to investigate the effect of silicon nanoparticles to overcome hypoxia stress through modulating antioxidant enzyme activity and carbohydrate metabolism. Three citrus rootstocks (Carrizo citrange, Roubidoux, and Rich 16-6) were exposed to flooding (with and without oxygen) through different SiNP treatments via foliar and root zone. SiNPs applied treatment plants showed a significant increase in photosynthesis, leaf greenness, antioxidant enzymes, and carbohydrate metabolic activities, besides the higher accumulation of proline and glycine betaine. The rate of lipid peroxidation was drastically higher in flooded plants; however, SiNPs application reduced it significantly, ultimately reducing oxidative damage. Overall, Rich16-6 rootstock showed good performance via root zone application compared to other rootstocks, possibly due to genotypical variation in silicon uptake. Our outcomes demonstrate that SiNPs significantly affect plant growth during hypoxia stress conditions, and their use is an optimal strategy to overcome this issue. This study laid the foundation for future research to use at the commercial level to overcome hypoxia stress and a potential platform for future research.

9.
Heliyon ; 10(15): e35861, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170246

RESUMEN

The issue of non-renewable energy scarcity has persisted over an extended period, primarily due to the depletion of fossil fuel reserves and the adverse effects of their utilization. This scarcity stems from the finite nature of fossil energy resources. The development of oil energy or biofuels aims to utilize oil-producing plants such as Jatropha curcas to develop alternative energy resources. However, metabolomic studies in Jatropha curcas are limited and need more investigations. Therefore, this research was essential to find biomarkers of metabolites among the fruit, leaf, and stem of Jatropha curcas using the GC-MS technique. We tested the metabolite profile with the R program, especially the metaboanalystR package, to determine fold change metabolite and pathway analysis. We found that 54 metabolites were detected in both fruit, leaf, and stem tissues of Jatropha curcas L, of which 19 metabolites were upregulated in the fruit, 20 metabolites in the leaf, and 15 up-regulated metabolites in the stem. The metabolites found formed three clusters based on correlation and networking metabolites analysis. The three clusters showed a relationship with the lipid biosynthesis pathway. In this study, provisional information was obtained that there was a different pattern of expression of metabolites between fruit, leaf, and stem tissues in Jatropha curcas, which was thought to be related to the critical metabolites of oleic acid and methylcyclohexane carboxylate in the biosynthetic pathway of fatty acids and unsaturated fatty acids. This information is essential as an initial reference for genetic engineering Jatropha curcas so that it can be used to transform plants, especially lipid-producing plants, as a source of oil.

10.
Environ Sci Pollut Res Int ; 31(23): 34526-34549, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709411

RESUMEN

Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 µM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Hesperidina , Metales Pesados , Metales Pesados/metabolismo , Hesperidina/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
11.
PLoS One ; 19(5): e0303264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758743

RESUMEN

Saffron, the "golden spice" derived from Crocus sativus L., is renowned for its richness in secondary metabolites such as crocin and safranal, contributing to its unique properties. Facing challenges like decreasing global production, optimizing cultivation techniques becomes imperative for enhanced yields. Although the impact of factors like planting density, planting depth, spacing, and corm size on saffron growth has been studied, the interaction between corm size and planting depth remains underexplored. This study systematically investigates the interactive effects of corm size and planting depth on saffron growth and yield, providing evidence-based guidelines for optimizing cultivation. A factorial experiment, employing a completely randomized design, was conducted to assess the influence of corm size (05-10g, 10.1-15g, 15.1-20g) and planting depth (10cm, 15cm, 20cm) on saffron yield. Uniform-sized corms were obtained, and a suitable soil mixture was prepared for cultivation. Morphological and agronomic parameters were measured, and statistical analyses were performed using ANOVA and Tukey's HSD test. The study revealed that planting depth significantly affected saffron emergence. The corms sown under 15cm depth showed 100% emergence regardless of corm size (either 05-10g, 10.1-15g, 15.1-20g) followed by 10cm depth corms. Corm dry weight exhibited a complex interaction, where larger corms benefited from deeper planting, while intermediate-sized corms thrived at shallower depths. Similar patterns were observed in shoot fresh weight and dry weight. Specifically, the largest corm size (t3, 15.1-20g) produced the greatest fresh-weight biomass at the deepest planting depth of 20cm (T3), while intermediate-sized corms (t2, 10.1-15g) were superior at the shallowest 10cm depth (T1). The total plant biomass demonstrated that larger corms excelled in deeper planting, while intermediate-sized corms were optimal at moderate depths. This research highlights the intricate interplay between corm size and planting depth in influencing saffron growth. Larger corms generally promote higher biomass, but the interaction with planting depth is crucial. Understanding these dynamics can aid farmers in tailoring cultivation practices for optimal saffron yields. The study emphasizes the need for a coordinated approach to corm selection and depth placement, providing valuable insights for sustainable saffron production and economic growth.


Asunto(s)
Crocus , Crocus/crecimiento & desarrollo , Crocus/metabolismo , Agricultura/métodos , Suelo/química , Biomasa , Carotenoides/metabolismo
12.
Heliyon ; 10(10): e31232, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813207

RESUMEN

Gangetic old alluvial zone in India has conserved many locally adapted aromatic rice landraces. In order to determine the extent of genetic divergence of ten morphological characters, the study was conducted to examine forty-eight aromatic rice genotypes for six Kharif seasons (2016-2021) at the Instructional Farm of Regional Research Station (Old Alluvial Zone), Uttar Banga Krishi Viswavidyalaya, Majhian, West Bengal, India. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. A considerable degree of variation was noted for all the traits being investigated. It was found that the total number of tillers per plant, panicle numbers per plant, number of grains per panicle, fertility percentage, test weight, and grain length/breadth ratio had significantly positive correlated with seed yield per plant. Based on D2 analysis values, all the genotypes were grouped into six clusters. Cluster III (Tulaipanji, Patnai, Basmati 1121, Jugal, and Bahurupi) and Cluster VI (Kanakchur), containing genotypes were found most divergent with maximum inter-cluster distance (6941.51). According to the cluster means, Cluster II had the largest intra-cluster distance (1937.52), and important attributes including test weight, number of grains per panicle, seed yield per plant, and fertility percentage made remarkably significant contributions to this cluster. In terms of principal component analysis, maximum variability was found in PC1 (23.88 %), with high positive loading values for tillers per plant (0.459), panicle number per plant (0.441), seed yield per plant (0.408), fertility percentage (0.364), test weight (0.264), and grain length/breadth (L/B) ratio (0.263). On the basis of biplot analysis, four genotypes, namely Shakbhati, Sugandhi, Bahurupi and Kanakchur, were identified as the most divergent types for the yield-attributing traits of aromatic rice. The diverse genotypes could be used as potential donors in future breeding programmes.

13.
Heliyon ; 10(10): e31554, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818181

RESUMEN

In recent years, an increase in weed infestation, which is adversely affecting crop growth and productivity has been a major challenge facing the farmers of South Asia. The adoption of a permanent bed in combination with residue retention-based crop management practices may reduce weed abundance and increase crop productivity. In a two-year field study, we evaluated the responses of different organic weed management practices with contrasting tillage and residue (R) management strategies to weed dynamics and crop productivity under rice-maize rotation. The main plot treatments consisted of zero-tillage direct seeded rice and zero-tillage maize (ZTR fb ZTM); ZTDSR and maize both on permanent raised beds with residue (PBDSR + R fb PBDSM + R); PBDSR and PBM without residue (PBDSR-R fb PBDSM-R) and conventional tillage puddled transplanted rice and conventional tillage maize (CTR fb CTM). The subplots comprised unweeded control; vermicompost mulch; P- enriched vermicompost mulch; live mulch with Sesbania spp. in rice and Pisum sativum in maize and weed-free. Total weed density and biomass in rice and maize at 30 days after sowing (DAS) were minimum for PBDSR + R fb PBDSM + R compared to remaining tillage and residue management practices in both years. Apart from weed-free treatment, the highest weed control index was found with live mulch. Yield of rice and maize were found higher in permanent beds along with residue retention-based practices. In rice, the weed-free treatment showed the highest grain yield and live mulch reported 9.8 and 6.8 % higher grain yield than vermicompost mulch and P-enriched vermicompost mulch respectively. Our study shows that conservation agriculture practices under rice-maize rotation is one of the ways to reduce weed density and improve crop productivity in South Asia and other similar agro-ecologies.

14.
Plants (Basel) ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337931

RESUMEN

Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate salinity stress (i.e., 25, 50, 100, and 200 mM NaCl) and improve pigment fractions, carbohydrates content, ions content, proline, hydrogen peroxide, lipid peroxidation, electrolyte leakage content, and the antioxidant system of Phaseolus vulgaris L. grown in clay-sandy soil. Methacrylic acid was used to synthesize CsNPs, with an average size of 40 ± 2 nm. Salinity stress negatively affected yield traits, pigment fractions, and carbohydrate content. However, in plants grown under salt stress, the application of either Cs or CsNPs significantly improved yield, pigment fractions, carbohydrate content, proline, and the antioxidant system, while these treatments reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage. The positive effects of CsNPs were shown to be more beneficial than Cs when applied exogenously to plants grown under salt stress. In this context, it could be concluded that CsNPs could be used to mitigate salt stress effects on Phaseolus vulgaris L. plants grown in saline soils.

15.
Front Plant Sci ; 15: 1396594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166242

RESUMEN

Background: Zea mays (maize) is a globally significant cereal crop with diverse applications in food, feed, and industrial products. However, maize cultivation is often challenged by environmental stressors such as heavy metal toxicity and drought stress (DS). Heavy metals like cadmium (Cd) and lead (Pb) can accumulate in soil through industrial activities and improper waste disposal, posing significant threats to plant growth and development. Drought stress further exacerbates these challenges by limiting water availability and affecting physiological processes in plants. This study explores the impact of Cd and Pb toxicity, as well as DS, on maize growth and development, and investigates the potential mitigating effects of various treatments, including gibberellic acid (GA3), biochar (BC), rhizobacteria (RB), and their combinations. Methods: The experiment involved maize plants subjected to different stress conditions: cadmium (Cd) at concentrations of 0, 6, and 12 ppm, lead (Pb) at 0 and 400 ppm, and drought stress (DS). Treatments included the application of 10 ppm GA3, 0.75% BC, a combined treatment of 10 ppm GA3 and 0.75% BC, rhizobacteria (RB), and a combined treatment of 0.5% BC and RB. The study measured germination rates, shoot and root lengths, and biochemical parameters such as shoot and root protein, phenolics, and chlorophyll contents under these conditions. Results: In the absence of Cd stress (0 Cd), the application of 10 ppm GA3 and 0.75% BC significantly enhanced germination rates by 72% and 76%, respectively, compared to the control, with the combined treatment exhibiting the highest enhancement of 86%. Under Cd stress (6 ppm Cd), GA3 and BC individually improved germination by 54% and 57%, respectively, with the combined treatment showing the largest increase of 63%. Drought stress influenced germination, with notable improvements observed with the application of 0.5% BC (50% increase) and RB (49% increase). Similar trends were observed in shoot and root lengths, where the combined treatment of GA3 and BC resulted in the most significant improvements. The treatments positively influenced shoot and root protein, phenolics, and chlorophyll contents, particularly under stress conditions. Conclusion: These findings highlight the potential of combined treatments, such as the application of GA3 and BC or BC with RB, in alleviating the adverse effects of heavy metals (Cd and Pb) and drought stress in maize cultivation. The combined treatments not only improved germination rates but also significantly enhanced shoot and root growth, as well as important biochemical parameters under stress conditions. This suggests that GA3 and BC, alone or in combination with RB, can play a crucial role in enhancing maize resilience to environmental stressors. The study highlights the importance of exploring sustainable agricultural practices to mitigate the impacts of heavy metal toxicity and drought stress. Future research should focus on long-term field trials to validate these findings and further investigate the mechanistic pathways involved in stress mitigation by these amendments, as well as their economic feasibility and environmental impact on a larger scale to ensure their practical applicability in real-world agricultural settings.

16.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998710

RESUMEN

The objective of this study is the development of innovative nanocurcumin-based formulations designed for the treatment and prevention of oxidative stress and diabetes. Nanocurcumin was obtained through a micronization process and subsequently encapsulated within biopolymers derived from corn starch and fenugreek mucilage, achieving encapsulation rates of 75% and 85%, respectively. Subsequently, the encapsulated nanocurcumin was utilized in the formulation of sugar-free syrups based on Stevia rebaudiana Bertoni. The stability of the resulting formulations was assessed by monitoring particle size distribution and zeta potential over a 25-day period. Dynamic light scattering (DLS) revealed a particle size of 119.9 nm for the fenugreek mucilage-based syrup (CURF) and 117 nm for the corn starch-based syrup (CURA), with polydispersity indices PDIs of 0.509 and 0.495, respectively. The dissolution rates of the encapsulated nanocurcumin were significantly enhanced, showing a 67% improvement in CURA and a 70% enhancement in CURF compared with crude curcumin (12.82%). Both formulations demonstrated excellent antioxidant activity, as evidenced by polyphenol quantification using the 2.2-diphenyl 1-pycrilhydrazyl (DPPH) assay. In the evaluation of antidiabetic activity conducted on Wistar rats, a substantial reduction in fasting blood sugar levels from 392 to 187 mg/mL was observed. The antioxidant properties of CURF in reducing oxidative stress were clearly demonstrated by a macroscopic observation of the rats' livers, including their color and appearance.

17.
Plants (Basel) ; 13(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065432

RESUMEN

The Brazilian Atlantic Forest, renowned for its exceptional species richness and high endemism, acts as a vital reservoir of terrestrial biodiversity, often referred to as a biodiversity hotspot. Consequently, there is an urgent need to restore this forest to safeguard certain species and to unravel the ecophysiological adaptations of others. This study aims to integrate some physiological parameters, including gas exchange and chlorophyll a fluorescence, with anatomical and metabolic techniques to elucidate how five different native species (Paubrasilia echinata, Chorisia glaziovii, Clusia nemorosa, Licania tomentosa, and Schinus terebinthifolius), each occupying distinct ecological niches, respond to seasonal variations in rainfall and their consequences. Our investigation has revealed that C. nemorosa and P. echinata exhibit robust mechanisms to mitigate the adverse effects of drought. In contrast, others demonstrate greater adaptability (e.g., S. terebinthifolia and C. glaziovii). In this context, exploring metabolic pathways has proven invaluable in comprehending the physiological strategies and their significance in species acclimatization. This study provides a comprehensive overview of the impact of water restrictions and their consequential effects on various species, defining the strategies each species uses to mitigate water privation during the dry season.

18.
Front Plant Sci ; 15: 1462981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411651

RESUMEN

The genotype evaluation process requires analysis of GxE interactions to ascertain the responsiveness of a genotype to various environments, including the development of early maturing rice. However, the concept of interaction is relatively specific to grain yield. In contrast, grain yield is highly polygenic, so assessment should be carried out with multivariate approaches. Therefore, multivariate assessment in evaluating GxE interactions should be developed, especially for early maturing rice genotypes. The study aimed to develop a comprehensive multivariate approach to improve the comprehensiveness and responsiveness of GxE interaction analysis. The study was conducted in Bone and Soppeng districts, South Sulawesi, Indonesia, in two seasons. The study used a randomized complete block design, where replications were nested across two seasons and locations. Two check varieties and five early maturing varieties were replicated three times in each environment. Based on this study, a new approach to GxE interaction analysis based on multiple regression index analysis, BLUP analysis, factor analysis, and path analysis was considered adequate, especially for evaluating early maturing rice. This approach combined days to harvest, biological yield, and grain yield in multiple linear regression with weighting based on the combination of all analyses. The effectiveness of the GxE interaction assessment was reflected by high coefficient of determination (R2) and gradient (b) values above 0.8 and 0.9, respectively. Inpari 13 (R2 = 0.9; b=1.05), Cakrabuana (R2 = 0.98; b=0.99), and Padjajaran (R2 = 0.95; b=1.07) also have good grain yield with days to harvesting consideration, namely 7.83 ton ha-1, 98.12 days; 7.37 ton ha-1, 95.52 days; and 7.29 ton ha-1, 97.23 days, respectively. Therefore, this index approach can be recommended in GxE interaction analysis to evaluate early maturing rice genotypes. Furthermore, Inpari 13, Cakrabuana, and Padjajaran are recommended as adaptive early maturing varieties.

19.
Front Plant Sci ; 15: 1427420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091318

RESUMEN

Drought stress poses a significant obstacle to agricultural productivity, particularly in the case of oilseed crops such as sunflower (Helianthus annuus L.). Selenium (Se) is a fundamental micronutrient that has been recognized for its ability to enhance plant resilience in the face of various environmental stresses. The FH-770 sunflower variety was cultivated in pots subjected to three stress levels (100% FC, 75% FC, and 50% FC) and four Se application rates (0 ppm, 30 ppm, 60 ppm, and 90 ppm). This research aimed to investigate the effect of exogenously applied Se on morpho-physiological and biochemical attributes of sunflower to improve the drought tolerance. Foliar Se application significantly lowered H2O2 (hydrogen peroxide; ROS) (20.89%) accumulation that markedly improved glycine betaine (GB) (74.46%) and total soluble protein (Pro) (68.63%), improved the accumulation of ascorbic acid (AA) (25.51%), total phenolics (TP) (39.34%), flavonoids (Flv) (73.16%), and anthocyanin (Ant) (83.73%), and improved the activity of antioxidant system superoxide dismutase (SOD) (157.63%), peroxidase (POD) (100.20%), and catalase (CAT) (49.87%), which ultimately improved sunflower growth by 36.65% during drought stress. Supplemental Se significantly increased shoot Se content (93.86%) and improved calcium (Ca2+), potassium (K+), and sodium (Na+) ions in roots by 36.16%, 42.68%, and 63.40%, respectively. Selenium supplements at lower concentrations (60 and 90 ppm) promoted the growth, development, and biochemical attributes of sunflowers in controlled and water-deficient circumstances. However, selenium treatment improved photosynthetic efficiency, plant growth, enzymatic activities, osmoregulation, biochemical characteristics, and nutrient balance. The mechanisms and molecular processes through which Se induces these modifications need further investigation to be properly identified.

20.
Plants (Basel) ; 12(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36840038

RESUMEN

Saline stress is one of the most critical abiotic stress factors that can lessen crops' productivity. However, emerging nanotechnology, nano-fertilizers, and developing knowledge of phytochromes can potentially mitigate the negative effects of saline stress on seed germination. Therefore, the aim of this study was to investigate the effects of seed priming either with zinc oxide nanoparticles (ZnO-NPs; 50 and 100 mg L-1) or 24-epibrassinolide (EBL; 0.2 and 0.4 µM) and their combinations on maize (Zea mays L.) grains sown in salt-stressed soil (50 and 100 mM NaCl). Saline stress treatments significantly affected all germination traits and chemical analysis of seeds as well as α-amylase activity. Compared to un-primed seeds, seed priming with ZnO-NPs or EBL and their combinations significantly increased the cumulative germination percentage, germination energy, imbibition rate, increase in grain weight, K+ content, and α-amylase activity, and significantly reduced germination time, days to 50% emergence, Na+ uptake, and Na+/K+ ratio of maize sown in salt-stressed-soil (50 or 100 mM NaCl). The combination of 100 mg ZnO-NPs L-1 + 0.2 µM EBL resulted in the highest improvements for most of the studied traits of maize seeds sown in salt-stressed soil in comparison to all other individual and combined treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA