Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioorg Med Chem Lett ; 25(4): 948-51, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25577039

RESUMEN

Inhibitors of the HCV NS5A nonstructural protein are showing promising clinical potential in the treatment of hepatitis C when used in combination with other direct-acting antiviral agents. Current NS5A clinical candidates such as daclatasvir, ledipasvir, and ombitasvir share a common pharmacophore that features a pair of (S)-methoxycarbonylvaline capped pyrrolidines linked to various cores by amides, imidazoles and/or benzimidazoles. In this Letter, we describe the evaluation of NS5A inhibitors which contain alternative heteroaromatic replacements for these amide mimetics. The SAR knowledge gleaned in the optimization of scaffolds containing benzoxazoles was parlayed toward the identification of potent NS5A inhibitors containing other heteroaromatic replacements such as indoles and imidazopyridines.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Relación Estructura-Actividad
2.
Bioorg Med Chem Lett ; 25(4): 936-9, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25595681

RESUMEN

The discovery of C2-symmetric bis-thienoimidazoles HCV NS5A inhibitors is herein reported. Two straightforward approaches to access the requisite diyne and biphenyl linker moieties are described. This study revealed the paramount importance of the aromatic character of the linker to achieve high genotype 1a potency.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Imidazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Imidazoles/química
4.
Bioorg Med Chem Lett ; 25(4): 944-7, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25577041

RESUMEN

The treatment of HCV with highly efficacious, well-tolerated, interferon-free regimens is a compelling clinical goal. Trials employing combinations of direct-acting antivirals that include NS5A inhibitors have shown significant promise in meeting this challenge. Herein, we describe our efforts to identify inhibitors of NS5A and report on the discovery of benzimidazole-containing analogs with subnanomolar potency against genotype 1a and 1b replicons. Our SAR exploration of 4-substituted pyrrolidines revealed that the subtle inclusion of a 4-methyl group could profoundly increase genotype 1a potency in multiple scaffold classes.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Pirrolidinas/farmacología , Proteínas no Estructurales Virales/efectos de los fármacos , Antivirales/química , Bencimidazoles/química , Genotipo , Pirrolidinas/química
5.
J Hepatol ; 56(1): 70-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21835140

RESUMEN

BACKGROUND & AIMS: Innate sensing of viral infection activates a global defense response including type I interferon (IFN) and IFN-stimulated genes (ISGs) expression. We previously reported that HCV NS3/4A protease, an essential protein in viral polyprotein processing, can abrogate antiviral signaling pathways and effectors' response when ectopically expressed in human hepatocytes by cleaving antiviral adaptor CARDIF. However, whether HCV mediates evasion of innate immunity in patients with chronic infection remains unclear. METHODS: In this study, paired liver biopsies and corresponding purified hepatocytes of chronic hepatitis C patients and controls were subjected to transcriptional analysis of selected innate immune genes and to CARDIF protein detection. RESULTS: We report that an antiviral response is largely supported by infected hepatocytes as demonstrated by upregulation of the representative antiviral genes ISG15, ISG56, and OASL as well as chemokines genes CXCL9, CXCL10, and CXCL11 measured in both HCV-derived liver biopsies and hepatocytes; that the mRNA levels of these indicator ISGs correlate inversely with HCV RNA level; and more importantly that expression of the early responsive IRF3-dependent genes type I IFNß, type III IL28A/IL29, and chemokine CCL5 are severely compromised and associated to a global decrease of CARDIF adaptor in infected hepatocytes. CONCLUSIONS: Altogether the data argue for a strong viral strategy that counteracts the host's early antiviral response of hepatocytes from chronic patients without impairing ISGs induced via classical IFN pathway.


Asunto(s)
Hepatitis C Crónica/inmunología , Inmunidad Innata , Hígado/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Quimiocinas/genética , Femenino , Hepatitis C Crónica/genética , Hepatitis C Crónica/metabolismo , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Inmunidad Innata/genética , Factores Reguladores del Interferón/genética , Interferones/genética , Hígado/metabolismo , Hígado/virología , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Regulación hacia Arriba
6.
J Hepatol ; 52(2): 167-75, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20006398

RESUMEN

BACKGROUND & AIMS: Molecular sensors recognize viral nucleic acids and initiate events that subsequently enable cells to control and clear infection. Hepatitis C Virus (HCV) can interfere with the innate host response and the NS3/4A protease was reported to specifically block antiviral signaling pathways, a finding that had yet to be studied in human primary hepatocytes. METHODS: Freshly isolated human primary hepatocytes, transduced with a lentiviral vector expressing HCV NS3/4A were stimulated with extracellular and intracellular double-stranded RNA (dsRNA) and the innate immune antiviral genes were quantified by quantitative PCR and microarrays analysis. RESULTS: We demonstrate that sensing receptors of human hepatocytes in primary cultures are stimulated following recognition of either mode of dsRNA delivery, inducing transcriptional up-regulation (over 100-fold) of multiple immune genes, either selectively or independently of recognition pathways. We also report that the intracellular dsRNA-activated innate response is severely compromised upon ectopic expression of the HCV NS3/4A protease gene in normal human primary hepatocytes, and completely restored by treatment with the NS3/4A protease specific inhibitor BILN2061. CONCLUSIONS: The present study indicates that NS3/4A has a wider protease-dependent effect on the intracellular Pathogen Recognition Receptor (PRR)-mediated immune response than on its extracellular counterpart, which underlies the major role of cytosolic dsRNA receptors in HCV recognition by primary human hepatocytes.


Asunto(s)
Hepatocitos/metabolismo , Hepatocitos/virología , Proteínas no Estructurales Virales/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Hepacivirus/inmunología , Hepacivirus/metabolismo , Hepatocitos/inmunología , Humanos , Inmunidad Innata , Técnicas In Vitro , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/genética , ARN/metabolismo , Transducción de Señal
7.
Liver Int ; 29(6): 942-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19302183

RESUMEN

BACKGROUND/AIM: Since the discovery of hepatitis C virus (HCV), researchers have encountered difficulties with in vitro models. The aim of this study was to determine whether HCV-infected human primary hepatocytes, isolated from cirrhotic livers at liver transplantation, can be used as a model to study HCV infection. METHODS: Hepatocytes were isolated with collagenase and cultured over a 20-day period on different matrices. Viral kinetics was monitored with/without treatment by real-time polymerase chain reaction. RESULTS: Cell yield and viability were higher with uninfected/non-cirrhotic livers (77.2+/-1.8%) in comparison with HCV-infected cirrhotic livers (68.8+/-12%). HCV-infected hepatocytes behaved similar to non-infected cells and expressed albumin and cytochrome P4502E1. HCV-positive strand was identified in supernatants and cell lysates. HCV-negative strand was only found inside cells and correlated with viral RNA recovery in the medium. Improvement in the degree of hepatocyte differentiation was associated with better HCV recovery. Antiviral treatment with interferon-alpha, EX4 and cyclosporine A induced significant reductions in HCV RNA. CONCLUSION: Primary cultures of HCV-infected human hepatocytes from end-stage cirrhotic livers is feasible, represents an excellent model to study specific virus-host interactions and can be used to assess viral replication.


Asunto(s)
Hepacivirus/genética , Hepatitis C/virología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Hígado/citología , Hígado/virología , Análisis de Varianza , Western Blotting , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ciclosporina/farmacología , Cartilla de ADN/genética , Hepacivirus/fisiología , Hepatocitos/efectos de los fármacos , Humanos , Interferón-alfa/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Replicación Viral/efectos de los fármacos
8.
Toxicol Appl Pharmacol ; 232(3): 456-62, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18708084

RESUMEN

Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the d-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the d-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the d-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the glucuronidating capacity of hepatocytes.


Asunto(s)
Acetaminofén/metabolismo , Glucurónidos/metabolismo , Hidrocarburos Clorados/toxicidad , Bifenilos Policlorados/toxicidad , Uridina Difosfato Ácido Glucurónico/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Glucuronatos/metabolismo , Glucogenólisis , Hepatocitos/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
9.
ACS Med Chem Lett ; 8(2): 251-255, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28197321

RESUMEN

Lomibuvir (1) is a non-nucleoside, allosteric inhibitor of the hepatitis C virus NS5B polymerase with demonstrated clinical efficacy. Further development efforts within this class of inhibitor focused on improving the antiviral activity and physicochemical and pharmacokinetic properties. Recently, we reported the development of this series, leading to compound 2, a molecule with comparable potency and an improved physicochemical profile relative to 1. Further exploration of the amino amide-derived side chain led to a series of lactam derivatives, inspired by the X-ray crystal structure of related thiophene carboxylate inhibitors. This series, exemplified by 12f, provided 3-5-fold improvement in potency against HCV replication, as measured by replicon assays. The synthesis, structure-activity relationships, in vitro ADME characterization, and in vivo evaluation of this novel series are discussed.

10.
J Med Chem ; 59(13): 6293-302, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27366941

RESUMEN

The hepatitis C viral proteins NS3/4A protease, NS5B polymerase, and NS5A are clinically validated targets for direct-acting antiviral therapies. The NS5B polymerase may be inhibited directly through the action of nucleosides or nucleotide analogues or allosterically at a number of well-defined sites. Herein we describe the further development of a series of thiophene carboxylate allosteric inhibitors of NS5B polymerase that act at the thumb pocket 2 site. Lomibuvir (1) is an allosteric HCV NS5B inhibitor that has demonstrated excellent antiviral activity and potential clinical utility in combination with other direct acting antiviral agents. Efforts to further explore and develop this series led to compound 23, a compound with comparable potency and improved physicochemical properties.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Hepacivirus/efectos de los fármacos , Tiofenos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Ciclohexanoles/química , Ciclohexanoles/farmacología , Relación Dosis-Respuesta a Droga , Hepacivirus/enzimología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
11.
ACS Med Chem Lett ; 5(3): 240-3, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24900811

RESUMEN

The discovery of potent thienoimidazole-based HCV NS5A inhibitors is herein reported. A novel method to access the thienoimidazole [5,5]-bicyclic system is disclosed. This method gave access to a common key intermediate (6) that was engaged in Suzuki or Sonogashira reactions with coupling partners bearing different linkers. A detailed study of the structure-activity relationship (SAR) of the linkers revealed that aromatic linkers with linear topologies are required to achieve high potency for both 1a and 1b HCV genotypes. Compound 20, with a para-phenyl linker, was identified as a potential lead displaying potencies of 17 and 8 pM against genotype 1a and 1b replicons, respectively.

12.
Antimicrob Agents Chemother ; 47(11): 3644-6, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14576137

RESUMEN

We evaluated the in vitro anti-human immunodeficiency virus type 1 (HIV-1) interactions between 1-beta-D-2,6-diaminopurine dioxolane (DAPD) and enfuvirtide (T-20) against clinical isolates sensitive and resistant to reverse transcriptase and protease inhibitors. Interactions between T-20 and DAPD were synergistic to nearly additive, with combination index values ranging from 0.53 to 1.06 at 95% inhibitory concentrations. These studies suggest that a combination of T-20 and DAPD might be useful in the treatment of antiretroviral drug-experienced patients.


Asunto(s)
Fármacos Anti-VIH/farmacología , Dioxolanos/farmacología , Proteína gp41 de Envoltorio del VIH/farmacología , VIH-1/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Nucleósidos de Purina/farmacología , Farmacorresistencia Viral , Sinergismo Farmacológico , Enfuvirtida , Infecciones por VIH/virología , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Inhibidores de la Transcriptasa Inversa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA