Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Planta Med ; 89(10): 964-978, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36940927

RESUMEN

The low amount of metabolites isolated from natural products is one of the challenges preventing their biological evaluation. The modulation of biosynthetic pathways by stimulating stress-induced responses in plants was proven to be a valuable tool for diversification of already known natural products. Recently, we reported the dramatic effect of methyl jasmonate (MeJA) on Vinca minor alkaloids distribution. In this study, three compounds identified as 9-methoxyvincamine, minovincinine, and minovincine are successfully isolated in good yield and subjected to several bioassays based on a network pharmacology study. The extracts and isolated compounds show weak to moderate antimicrobial and cytotoxic activities. Also, they are found to significantly promote wound healing in scratch assay, and transforming growth factor-ß (TGF-ß) modulation is suggested to be the potential pathway based on bioinformatic analysis. Hence, Western blotting is used to assess the expression of several markers related to this pathway and wound healing. The extracts and isolated compounds are able to increase the expression of Smad3 and Phosphatidylinositol-3-kinase (PI3K), while downregulating the levels of cyclin D1 and the mammalian target of rapamycin (mTOR) except for minovincine, which increases the mTOR expression, inferring that it might act through a different mechanism. Molecular docking is used to give insights on the ability of isolated compounds to bind with different active sites in mTOR. Collectively, the integrated phytochemical, in silico, and molecular biology approach reveal that V. minor and its metabolite could be repurposed for the management of dermatological disorders where these markers are dysregulated, which opens the gate to develop new therapeutics in the future.


Asunto(s)
Alcaloides , Vinca , Vinca/química , Vinca/metabolismo , Simulación del Acoplamiento Molecular , Alcaloides/farmacología , Alcaloides/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
2.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985619

RESUMEN

In this study, the allelopathic properties of Medicago sativa L. (alfalfa) seedling exudates on the germination of seeds of various species were investigated. The compounds responsible for the allelopathic effects of alfalfa were identified and characterized by employing liquid chromatography ion mobility high-resolution mass spectrometry. Crude exudates inhibited the germination of seeds of all various plant species tested. Overall, nine compounds in alfalfa were identified and quantified. The most predominant compounds were a hyperoside representing a flavonoid glucoside, the non-proteinogenic amino acid canavanine, and two dipeptides, identified as H-Glu-Tyr-OH and H-Phe-Glu-OH. The latter corresponds to the first finding that dipeptides are exuded from alfalfa seedlings. In addition, the antibacterial and antibiofilm activities of alfalfa exudate and its identified compounds were elucidated. Both hyperoside and canavanine revealed the best antibacterial activity with minimum inhibitory concentration (MIC) values that ranged from 8 to 32 and 32 to 256 µg/mL, respectively. Regarding the antibiofilm action, hyperoside and canavanine caused a decline in the percentage of E. coli isolates that possessed a strong and moderate biofilm-forming potential from 68.42% to 21.05% and 31.58%, respectively. Studies on their inhibiting effects exhibit that these major substances are predominantly responsible for the allelopathic and antimicrobial effects of the crude exudates.


Asunto(s)
Medicago sativa , Plantones , Medicago sativa/química , Escherichia coli , Canavanina/análisis , Canavanina/farmacología , Germinación , Exudados y Transudados , Semillas/química
3.
Plant Cell Physiol ; 58(8): 1421-1430, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633475

RESUMEN

The most prominent alkaloid of Chelidonium majus is dihydrocoptisine, revealing the characteristic benzophenanthridine skeleton. To date, any informationon on the enzymes responsible for its biosynthesis and the related genes in C. majus is lacking. Based on sequence similarities to the corresponding methylenedioxy bridge-forming Cyt P450 enzymes involved in isoquinoline alkaloid biosynthesis in Eschscholzia californica, genes for a cheilanthifoline synthase and a stylopine synthase from C. majus were isolated, sequenced and heterologously expressed in yeast. The activity of the heterologously expressed Cyt P450 enzymes was determined in situ as well as on the basis of microsomal fractions. It was shown that cheilanthifoline synthase (c8931) converts scoulerine into cheilanthifoline, the latter subsequently being converted to stylopine by the action of a stylopine synthase (c1128). Based on the well-known instability of stylopine, it can be assumed that in vivo-under the acidic conditions in the vacuole-this alkaloid is converted to dihydrocoptisine, which accumulates in C. majus leaves. Both methylenedioxy bridge-forming Cyt P450 enzymes from C. majus are characterized by their high substrate specificity. Apart from their genuine substrates, i.e. scoulerine and cheilanthifoline, cheilanthifoline synthase and stylopine synthase do not accept other substrates tested; the only alternative substrate identified was scoulerine, which is converted by stylopine synthase to yield minor amounts of nandinine. Quantitative real-time PCR revealed that the expression of cheilanthifoline synthase and stylopine synthase genes is very similar in both roots and leaves from C. majus, although the alkaloid accumulation patterns in these organs are quite different.


Asunto(s)
Alcaloides/metabolismo , Chelidonium/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Isoquinolinas/metabolismo , Proteínas de Plantas/genética , Alcaloides de Berberina/metabolismo , Chelidonium/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/metabolismo , Especificidad por Sustrato
4.
J Nat Prod ; 80(11): 2905-2909, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29131648

RESUMEN

Alkaloids extracted from mature Vinca minor leaves were fractionated by preparative HPLC. By means of HRMS and NMR data, the main alkaloids were identified as vincamine, strictamine, 10-hydroxycathofoline, and vincadifformine. Upon treatment with methyl jasmonate (MeJA), the pattern and composition of the indole alkaloids changed extensively. While 10-hydroxycathofoline and strictamine concentrations remained unaltered, vincamine and vincadifformine levels showed a dramatic reduction. Upon MeJA treatment, four other indole alkaloids were detected in high quantities. Three of these alkaloids have been identified as minovincinine, minovincine, and 9-methoxyvincamine. Whereas minovincinine and minovincine are known to occur in trace amounts in V. minor, 9-methoxyvincamine represents a novel natural product. Based on the high similarities of vincamine and 9-methoxyvincamine and their inverse changes in concentrations, it is postulated that vincamine is a precursor of 9-methoxyvincamine. Similarly, vincadifformine seems to be converted first to minovincinine and finally to minovincine. Because MeJA treatment greatly altered the alkaloidal composition of V. minor, it could be used as a potential elicitor of alkaloids that are not produced under normal conditions.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Alcaloides Indólicos/análisis , Oxilipinas/farmacología , Vinca/química , Vincamina/análogos & derivados , Alcaloides , Cromatografía Líquida de Alta Presión , Alemania , Alcaloides Indólicos/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Vinca/enzimología , Alcaloides de la Vinca , Vincamina/química , Vincamina/farmacología
5.
Plant Cell Physiol ; 54(6): 817-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23612932

RESUMEN

Spice and medicinal plants grown under water deficiency conditions reveal much higher concentrations of relevant natural products compared with identical plants of the same species cultivated with an ample water supply. For the first time, experimental data related to this well-known phenomenon have been collected and a putative mechanistic concept considering general plant physiological and biochemical aspects is presented. Water shortage induces drought stress-related metabolic responses and, due to stomatal closure, the uptake of CO2 decreases significantly. As a result, the consumption of reduction equivalents (NADPH + H(+)) for CO2 fixation via the Calvin cycle declines considerably, generating a large oxidative stress and an oversupply of reduction equivalents. As a consequence, metabolic processes are shifted towards biosynthetic activities that consume reduction equivalents. Accordingly, the synthesis of reduced compounds, such as isoprenoids, phenols or alkaloids, is enhanced.


Asunto(s)
Productos Biológicos/metabolismo , Plantas/metabolismo , Metabolismo Secundario , Estrés Fisiológico , Sequías , Metabolismo Energético
6.
J Sci Food Agric ; 93(4): 918-23, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22886455

RESUMEN

BACKGROUND: Horseradish plants (Armoracia rusticana) contain high concentrations of glucosinolates. Former studies have revealed that Armoracia plants cultivated in vitro have markedly lower glucosinolate concentrations than those grown in soils. Yet, these studies neglected that the sulfate concentration in the growth medium may have had a strong impact on glucosinolate metabolism. Accordingly, in this study horseradish in vitro plants were cultivated with differing sulfate concentrations and the glucosinolate concentrations were quantified by ion pair HPLC. RESULTS: Cultivation in 1.7 mmol L(-1) sulfate (as used in the prior studies) resulted in the accumulation of 16.2 µmol g(-1) DW glucosinolates, while the glucosinolate concentration increased to more than 23 µmol g(-1) DW when 23.5 mmol L(-1) sulfate was used in the medium. Correspondingly, the glucosinolate concentration decreased to 1.6 µmol g(-1) DW when sulfate concentration was lowered to 0.2 mmol L(-1). CONCLUSION: Since the glucosinolate accumulation in relation to the sulfate concentration follows a typical saturation curve, we deduce that the availability of sulfate determines the glucosinolate concentration in horseradish in vitro plants.


Asunto(s)
Armoracia/metabolismo , Glucosinolatos/metabolismo , Suelo/química , Sulfatos/metabolismo , Dieta , Humanos
7.
Arch Anim Nutr ; 67(6): 461-76, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24228909

RESUMEN

Many health effects can be attributed to the Mediterranean herb oregano (Origanum vulgare L.) and several studies demonstrated the improving effect on performance, changes in blood count, antibacterial, antifungal and immunmodulating abilities. The majority of these investigations were carried out with processed essential oil, while whole plant material was only used in a few studies. Thus, the aim of the present experiment was to test the effect of increasing proportions of dried oregano in piglet feed on health and performance, with a special focus on immune modulation. A total of 80 male castrated weaned piglets (body weight [BW] 7.9 kg ± 1.0 kg) were used in a feeding experiment lasting 5 weeks. They were assigned to 4 experimental groups: a control diet, and three diets with an oregano supplementation at 2 g, 4 g and 8 g per kg feed, respectively, corresponding to 23.5 mg, 46.9 mg and 93.9 mg carvacrol/kg DM. After 3 weeks, half of each group was challenged with 5 µg lipopolysaccharides (LPS) per kg BW. Blood samples were collected 2 h after LPS stimulation and analysed for T-cell phenotypes, granulocyte activity, clinical-chemistry as well as white and red blood count. The results indicate no effects of oregano on performance. In contrast, oregano altered the lymphocyte proportion and the ratio of CD4(+) and CD8(+) T-cells as well as the triglyceride concentration in the serum of non-stimulated and in LPS-stimulated piglets. In conclusion, whole plant supplementation of oregano to piglet feed altered immune-related parameters, but did not modulate the acute inflammatory response induced by LPS stimulation.


Asunto(s)
Inmunomodulación/efectos de los fármacos , Origanum/química , Sus scrofa/crecimiento & desarrollo , Sus scrofa/inmunología , Alimentación Animal/análisis , Animales , Análisis Químico de la Sangre/veterinaria , Dieta/veterinaria , Suplementos Dietéticos/análisis , Pruebas Hematológicas/veterinaria , Lipopolisacáridos/administración & dosificación , Masculino , Sus scrofa/metabolismo , Linfocitos T/metabolismo , Destete
8.
Ann Bot ; 109(7): 1253-62, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22451599

RESUMEN

BACKGROUND AND AIMS: The release of hydrogen cyanide (HCN) from injured plant tissue affects multiple ecological interactions. Plant-derived HCN can act as a defence against herbivores and also plays an important role in plant-pathogen interactions. Crucial for activity as a feeding deterrent is the amount of HCN generated per unit time, referred to as cyanogenic capacity (HCNc). Strong intraspecific variation in HCNc has been observed among cyanogenic plants. This variation, in addition to genotypic variability (e.g. in Trifolium repens), can result from modifications in the expression level of the enzymes involved in either cyanogenic precursor formation or HCN release (as seen in Sorghum bicolor and Phaseolus lunatus). Thus, a modification or modulation of HCNc in reaction to the environment can only be achieved from one to the next generation when under genetic control and within days or hours when transcriptional regulations are involved. In the present study, it is shown that in rubber tree (Hevea brasiliensis) HCNc is modulated by post-translational activity regulation of the key enzymes for cyanide release. METHODS: Linamarase (LIN) and hydroxynitrile lyase (HNL) activity was determined by colorimetric assays utilizing dissociation of the substrates p-nitrophenyl-ß-d-glucopyranoside and acetone cyanohydrin, respectively. KEY RESULTS: In rubber tree leaves, LIN and HNL show up to ten-fold increased activity in response to tissue damage. This enzyme activation occurs within seconds and results in accelerated HCN formation. It is restricted to the damaged leaf area and depends on the severity of tissue damage. CONCLUSIONS: LIN and HNL activation (in contrast to genetic and transcriptional regulations) allows an immediate, local and damage type-dependent modulation of the cyanogenic response. Accordingly, this post-translational activation plays a decisive role in the defence of H. brasiliensis against herbivores as well as pathogens and may allow more flexible reactions in response to these different antagonists.


Asunto(s)
Aldehído-Liasas/metabolismo , Hevea/enzimología , Cianuro de Hidrógeno/metabolismo , beta-Glucosidasa/metabolismo , Activación Enzimática , Cinética , Especificidad por Sustrato
9.
Plants (Basel) ; 11(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35406945

RESUMEN

Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic side of the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the central vacuole. A universal explanation for the subcellular transport of flavonoids has eluded researchers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) protects anthocyanins and potentially proanthocyanidin precursors during the transport to the central vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids from the ER to the vacuole is considered as an alternative or additional route.

10.
Plants (Basel) ; 11(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501305

RESUMEN

Whereas the translocation of allelochemicals between plants is well established, a related general transfer of genuine specialized metabolites has not been considered so far. The elucidation of the so-called "Horizontal Natural Product Transfer" revealed that alkaloids, such as nicotine and pyrrolizidine alkaloids, which are leached out from decomposing alkaloid-containing plants (donor plants), are indeed taken up by the roots of plants growing in the vicinity (acceptor plants). Further studies demonstrated that phenolic compounds, such as coumarins or stilbenes, are also taken up by acceptor plants. Contemporary analyses from co-cultivation experiments outlined that natural products are not exclusively transferred from dead and rotting donor plant materials, but also from vital plants. In analogy to xenobiotics, the imported specialized metabolites might also be modified within the acceptor plants. As known from the uptake of xenobiotics, the import of specialized metabolites is also generally due to a simple diffusion of the substances across the biomembranes and does not require a carrier. The uptake depends in stricto sensu on the physicochemical properties of the certain compound. This article presents a current overview of the phenomenon of "Horizontal Natural Product Transfer" and discusses its relevance for our understanding of allelopathic interactions. The knowledge that specialized metabolites might in general be readily translocated from one plant into others should significantly contribute to our understanding of plant-plant interactions and-in particular-to the evolution of typical allelopathic effects, such as inhibition of growth and germination of potential competitors.

11.
Phytochemistry ; 187: 112774, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33930669

RESUMEN

Medicinal plants grown under stress conditions reveal higher concentrations of relevant specialized metabolites than well-watered plants, putatively due to an enhanced biosynthesis. Yet, stress also reduced the biomass gain. Accordingly, the concentration increase in comparison to control plants could also be due to lesser biomass employed as the reference value, whereas the rate of biosynthesis may remain unchanged. For an unequivocal proof that stress indeed enhances the biosynthesis, the total amount of the substances per plant has to be determined. In this study, we investigated the stress-induced impact on the alkaloids accumulated in Catharanthus roseus and quantified both, the changes in concentration and in the entire amount of alkaloids. At any time, all Catharanthus roseus plants grown under drought stress exhibited a markedly higher alkaloid concentration compared to the well-watered controls. However, by calculating the entire alkaloid content per plant, a corresponding increment occurred only within the first two weeks of drought stress. Thereafter, no significant differences among drought treatments and control were detected. Finally, within the last week, the alkaloid content per plant decreased markedly, although there was a meaningfully higher concentration of alkaloids in the drought-stressed plants. In contrast, when plants had been exposed to high salt concentrations, the alkaloid concentrations were quite the same in stressed and control plants. The related total contents were significantly lower in plants exposed to salt stress. These results display that both phenomena, an increased rate of biosynthesis and lesser reference values, i.e., the biomass, contribute to the stress-related increase in the concentration of natural product. Moreover, it has to be considered that the enhancement of biosynthesis could be due to either an "active" up-regulation of biosynthetic capacity or a "passive" shift caused by the over-reduced status as a result of the stress-induced stomatal closure.


Asunto(s)
Alcaloides , Catharanthus , Plantas Medicinales , Sequías , Agua
12.
Plant Cell Physiol ; 51(4): 546-53, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20208063

RESUMEN

In order to produce tradeable standard green coffee, processed beans must be dried. The drying procedure affects the abundance of relevant aroma substances, e.g. carbohydrates. Using molecular tools, the corresponding metabolic basis is analyzed. A decrease in water potential of the still living coffee seeds induces massive drought stress responses. As a marker for these stress reactions, accumulation of a general stress metabolite, GABA (gamma-aminobutyric acid), and associated gene expression of drought stress-associated dehydrins were monitored. The results of this study indicate that metabolism in drying coffee beans is quite complex since several events trigger accumulation of GABA. The first peak of GABA accumulation during drying is correlated with expression of isocitrate lyase and thus with ongoing germination processes in coffee seeds. Two subsequent peaks of GABA accumulation correspond to maxima of dehydrin gene expression and are thought to be induced directly by drought stress in the embryo and endosperm tissue, respectively. Apart from the significance for understanding basic seed physiology, metabolic changes in coffee seeds during processing provide valuable information for understanding the role and effect of the steps of green coffee processing on the quality of the resulting coffee.


Asunto(s)
Coffea/metabolismo , Desecación , Proteínas de Plantas/genética , Semillas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Cromatografía Líquida de Alta Presión , Coffea/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Biológicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética
13.
Phytochemistry ; 174: 112362, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32229335

RESUMEN

Substances which have been leached out from decomposing plant parts or exuded from vital plants (donor plants), are taken up by acceptor plants and subsequently modified. This phenomenon was likewise established for harmala alkaloids. Employing hydroponically grown barley seedlings, it becomes evident that harmaline and harmine are taken up by the roots of the acceptor plants. Furthermore, based on HPLC and GC-MS analyses, it was demonstrated that these alkaloids also are present in Setaria viridis plants, which grew in the direct vicinity of the alkaloid containing Peganum harmala plants. Since harmaline exhibits a bright green fluorescence, this alkaloid was employed to visualize the uptake into the acceptor plants by feeding it to roots of barley seedlings. In the further course, the imported harmaline was converted in the leaves to yield harmine, which exhibits a dark blue fluorescence. This conversion was also verified by HPLC and GC-MS analyses. Based on the massive differences in the fluorescence properties, both processes, uptake and modification in the acceptor plants, could be monitored by macroscopical studies as well as by confocal laser scanning microscopical analyses. As result, for the first time, the phenomenon of "Horizontal Natural Product Transfer" is visualized vividly.


Asunto(s)
Productos Biológicos , Peganum , Harmalina , Harmina , Proyectos Piloto
14.
Phytochemistry ; 159: 102-107, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30605851

RESUMEN

This study focuses on the elucidation of the stress-induced reverse changes of major indole alkaloids in Vinca minor, primarily on the postulated conversion of vincamine and vincadifformine to yield 9-methoxyvincamine, minovincine, and minovincinine, respectively. By applying the P450 enzyme inhibitors, naproxen and resveratrol, it was shown that the oxidative reaction involved in the postulated conversion of vincamine and vincadifformine is catalyzed by cytochrome P450 enzymes. In combination with the identification of 9-hydroxyvincamine as a postulated intermediate, this result confirms that the observed stress-induced reverse changes in the alkaloid pattern are caused by modifications of the alkaloids which regularly accumulate in the healthy Vinca minor plants. Up to now, just two main types of defense compounds are distinguished: phytoalexins, which are synthesized de novo from primary metabolites and phytoanticipins, which are constitutively present in plants - either intrinsically active or are activated after cell death by hydrolysis or oxidation of the precursors. In contrast, the results presented in this paper demonstrate that indole alkaloids, representing typical phytoanticipins, are just slightly modified in response to a stress-related elicitation. Accordingly, these modified alkaloids neither represent classical phytoalexins (being synthesized de novo), nor can they be classified as phytoanticipins, since modification does not occur postmortem. Consequently, we propose a new category for these modified alkaloids that we call phytomodificines.


Asunto(s)
Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Estrés Fisiológico , Vinca/metabolismo , Alcaloides/antagonistas & inhibidores , Alcaloides/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Naproxeno/farmacología , Oxidación-Reducción , Resveratrol/farmacología , Vincamina/antagonistas & inhibidores , Vincamina/metabolismo
15.
Phytochemistry ; 168: 112110, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31494345

RESUMEN

Based on the occurrence of indole alkaloids in so-called "chloroform leaf surface extracts", it was previously deduced that these alkaloids are present in the cuticle at the leaf surface of Catharanthus roseus and Vinca minor. As no symplastic markers were found in these extracts this deduction seemed to be sound. However, since chloroform is known to destroy biomembranes very rapidly, these data have to be judged with scepticism. We reanalyzed the alleged apoplastic localization of indole alkaloids by employing slightly acidic aqueous surface extracts and comparing the corresponding alkaloid patterns with those of aqueous total leaf extracts. Whereas in the "chloroform leaf surface extracts" all alkaloids are present in the same manner as in the total leaf extracts, no alkaloids occur in the aqueous leaf surface extracts. These results clearly show that chloroform had rapidly destroyed cell integrity, and the related extracts also contain the alkaloids genuinely accumulated within the protoplasm. The related decompartmentation was verified by the massively enhanced concentration of amino acids in aqueous surface extracts of chloroform treated leaves. Furthermore, the chloroform-induced cell disintegration was vividly visualized by confocal laser scanning microscopical analyses, which clearly displayed a strong decrease in the chlorophyll fluorescence in chloroform treated leaves. These findings unequivocally display that the indole alkaloids are not located in the apoplastic space, but exclusively are present symplastically within the cells of V. minor and C. roseus leaves. Accordingly, we have to presume that also other leaf surface extracts employing organic solvents have to be re-investigated.


Asunto(s)
Catharanthus/química , Alcaloides Indólicos/análisis , Alcaloides Indólicos/aislamiento & purificación , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/citología , Vinca/química , Catharanthus/citología , Alcaloides Indólicos/química , Extractos Vegetales/química , Hojas de la Planta/química , Vinca/citología
16.
Phytochemistry ; 157: 194-199, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30439620

RESUMEN

Inspired by the recently discovered phenomenon of "horizontal natural product transfer" we investigated the putative uptake of phenolic specialized metabolites. Umbelliferone was chosen for this case study, since this coumarin as well as its derivatives can easily be determined by HPLC analyses. Barley (Hordeum vulgare L.), radish (Raphanus sativus L.), pea (Pisum sativum L.), flax (Linum usitatissimum L.), and garden cress (Lepidium sativum L.) were cultivated in hydroponic media, to which the coumarin was applied. Uptake of umbelliferone was verified by corresponding HPLC analyses of extracts obtained from the aerial parts of the seedlings. In all cases, a tremendous uptake of umbelliferone was observed. In plants that genuinely contain coumarins, the umbelliferone taken up was modified: in garden cress, it was hydroxylated and glucosylated to yield esculin, while in barley seedlings, the imported umbelliferone was modified by methoxylation to yield scopoletin. Corresponding reactions are known from modifications of xenobiotics to be catalyzed by cytochrome P450 enzymes. Accordingly, in an additional approach, umbelliferone was applied together with naproxen, which is reported to reduce enzyme activity of P450 enzymes. As predicted, the conversion of umbelliferone to scopoletin in barley as well as the modification to esculin in garden cress was strongly reduced by the addition of naproxen. These data for the first time demonstrate that - in addition to alkaloids - also phenolic compounds are taken up by various acceptor plants. Apart from the leaching of rotting plants, coumarins are known to be exuded by many plants. Accordingly, these compounds are frequently present in soils and will be taken up. These coherences imply that the horizontal natural product transfer might represent a more general phenomenon in plant ecology. Moreover, this study outlines that - in analogy to the modification of xenobiotics - also natural products taken up are modified in the acceptor plants.


Asunto(s)
Plantones/metabolismo , Umbeliferonas/metabolismo , Transporte Biológico , Plantas/metabolismo
17.
J Agric Food Chem ; 67(32): 8740-8745, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31334643

RESUMEN

Just recently, the "horizontal natural product transfer" was unveiled: alkaloids, which have been leached out from decomposing alkaloidal donor plants, are taken up by the roots of acceptor plants. In the same manner, many other natural products, such as coumarins or stilbenes, are also taken up from the soil. Recent research outlined that alkaloids are transferred also from a living donor plant to plants growing in their vicinity. In the acceptor plants, the imported natural products might be modified by hydroxylation and glucosylation. These insights will strongly impact our understanding of contamination of plant-derived commodities as well as plant-plant interactions.


Asunto(s)
Productos Biológicos/metabolismo , Plantas/metabolismo , Alcaloides/análisis , Alcaloides/metabolismo , Productos Biológicos/análisis , Transporte Biológico , Raíces de Plantas/metabolismo , Plantas/química
18.
Environ Pollut ; 248: 456-461, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30826608

RESUMEN

To elucidate the origin of the wide-spread contaminations of plant derived commodities with various alkaloids, we employed co-cultures of pyrrolizidine alkaloid (PA) containing Senecio jacobaea plants with various alkaloid free acceptor plants. Our analyses revealed that all plants grown in the vicinity of the Senecio donor plants indeed contain significant amounts of the PAs, which previously had been synthesized in the Senecio plants. These findings illustrate that typical secondary metabolites, such as pyrrolizidine alkaloids, are commonly transferred and exchanged between living plants. In contrast to the broad spectrum of alkaloids in Senecio, in the acceptor plants nearly exclusively jacobine is accumulated. This indicates that this alkaloid is exuded specifically by the Senecio roots. Although the path of alkaloid transfer from living donor plants is not yet fully elucidated, these novel insights will extend and change our understanding of plant-plant interactions and reveal a high relevance with respect to the widespread alkaloidal contaminations of plant-derived commodities. Moreover, they could be the basis for the understanding of various so far not fully understood phenomena in cultivation of various crops, e.g. the beneficial effects of crop rotations or the co-cultivation of certain vegetables.


Asunto(s)
Transporte Biológico/fisiología , Raíces de Plantas/metabolismo , Alcaloides de Pirrolicidina/metabolismo , Senecio/metabolismo , Contaminación de Medicamentos
19.
Ann Bot ; 101(1): 31-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17981880

RESUMEN

BACKGROUND AND AIMS: When green coffee is stored for a prolonged time the coffee quality decreases distinctively. Apart from well-known 'off-notes' that arise from undesired oxidations of lipids, a typical 'flattening' of the cup quality is detectable. In order to elucidate the biological causes for this phenomenon, differentially processed coffees (wet, dry, semi-dry processing), were stored under standard conditions for 2 years and analysed comprehensively. METHODS: Wet-processed coffee was stored either as parchment coffee, where the endocarp remained around the beans or as hulled beans. Viability of coffee seeds was estimated using the tetrazolium-test of seed viability. Changes in concentration of free amino acids and soluble carbohydrates were analysed by HPLC. KEY RESULTS: Whereas all other coffees lost viability within the first 6 months of storage, coffee beans stored within the parchment remained viable for >1 year. Glucose and fructose decreased slightly in the course of storage and glutamine content declined significantly. However, the changes observed in sugar and amino acid content were not correlated with the viability of the coffee beans. Consequently, neither typical metabolic reactions occurring within living cells nor characteristic post-mortem reactions could be responsible for the observed changes. As a result of post-mortem reactions in re-imbibed seeds, a characteristic bluish-green colour developed, putatively due to the oxidation of chlorogenic acids and subsequent reactions with primary amino compounds. This coloration might be an appropriate marker to substantiate if coffee seeds had been stored for an expanded time and putative quality losses were not relevant so far. CONCLUSIONS: It is suggested that loss of viability is relevant for the aroma flattening. As neither metabolic nor post-mortem reactions were responsible for the observed changes, it is concluded that Maillard reactions that occur during storage might be the cause of the decrease in potential aroma precursors.


Asunto(s)
Coffea/embriología , Café , Manipulación de Alimentos/métodos , Odorantes , Semillas/metabolismo , Aminoácidos/metabolismo , Cromatografía por Intercambio Iónico , Coffea/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Gusto
20.
Phytochemistry ; 152: 204-212, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29783187

RESUMEN

When plants are exposed to various stress situations, their alkaloid concentration frequently is enhanced. This well-known phenomenon is presumably due to a passively enhanced rate of biosynthesis, caused by greatly elevated concentrations of NADPH in stressed plants. Here, we used Chelidonium majus L. plants, which accumulate high concentrations of dihydrocoptisine in their leaves, to study the impact of drought and salt stress on the biosynthesis and accumulation of alkaloids. In comparison to well-watered controls, in the transcriptome of the gene encoding the key enzyme in alkaloid biosynthesis, stylopine synthase, is enhanced in stressed C. majus plants. If we presuppose that increased transcript levels correlate with increased enzymatic activity of the gene products, these data indicate, for the first time, that stress-related increases in alkaloid concentration might not only be caused by the well-known stress-related passive shift, but may also be due to an enhancement of enzymatic capacity.


Asunto(s)
Alcaloides/biosíntesis , Chelidonium/metabolismo , Sequías , Cloruro de Sodio/química , Alcaloides/química , Chelidonium/química , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA