Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Chem Rev ; 124(5): 2352-2418, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38408190

RESUMEN

This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.

2.
J Am Chem Soc ; 146(9): 6061-6071, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385349

RESUMEN

The highly reactive binuclear [Cu2O]2+ active site in copper zeolites activates the inert C-H bond of methane at low temperatures, offering a potential solution to reduce methane flaring and mitigate atmospheric methane levels. While substantial progress has been made in understanding the activation of methane by this core, one critical aspect, the active site's spin, has remained undetermined. In this study, we use variable-temperature, variable-field magnetic circular dichroism spectroscopy to define the ground state spin of the [Cu2O]2+ active sites in Cu-CHA and Cu-MFI. This novel approach allows for site-selective determination of the magnetic exchange coupling between the two copper centers of specific [Cu2O]2+ cores in a heterogeneous mixture, circumventing the drawbacks of bulk magnetic techniques. These experimental findings are coupled to density functional theory calculations to elucidate magnetostructural correlations in copper zeolites that are different from those of homogeneous binuclear Cu(II) complexes. The different spin states for the [Cu2O]2+ cores have different reactivities governed by how methane approaches the active site. This introduces a new understanding of zeolite topological control on active site reactivity.

3.
J Am Chem Soc ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046226

RESUMEN

Methane is one of the most potent greenhouse gases; developing technology for its abatement is essential for combating climate change. Copper zeolites can activate methane at low temperatures and pressures, demonstrating promise for this technology. However, a barrier to industrial implementation is the inability to recycle the Cu(II) active site. Anaerobic active site regeneration has been reported for copper-loaded mordenite, where it is proposed that water oxidizes Cu(I) formed from the methane reaction, producing H2 gas as a byproduct. However, this result has been met with skepticism given the overall reaction is thermodynamically unfavorable. In this study, we use X-ray absorption and electron paramagnetic resonance spectroscopies to study the role of water in copper zeolite methane oxidation. We find that water does not oxidize Cu(I) to Cu(II) in CH4-reacted Cu-MOR. Further, using isotope label mass spectrometry, we detail an alternate source of the hydrogen byproduct. We uncover that, although water does not oxidize Cu(I), it has the potential to facilitate low temperature methane abatement through promotion of product decomposition to carbon dioxide and H2.

4.
Chem Rev ; 122(14): 12207-12243, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35077641

RESUMEN

Transition-metal-exchanged zeolites perform remarkable chemical reactions from low-temperature methane to methanol oxidation to selective reduction of NOx pollutants. As with metalloenzymes, metallozeolites have impressive reactivities that are controlled in part by interactions outside the immediate coordination sphere. These second-sphere effects include activating a metal site through enforcing an "entatic" state, controlling binding and access to the metal site with pockets and channels, and directing radical rebound vs cage escape. This review explores these effects with emphasis placed on but not limited to the selective oxidation of methane to methanol with a focus on copper and iron active sites, although other transition-metal-ion zeolite reactions are also explored. While the actual active-site geometric and electronic structures are different in the copper and iron metallozeolites compared to the metalloenzymes, their second-sphere interactions with the lattice or the protein environments are found to have strong parallels that contribute to their high activity and selectivity.


Asunto(s)
Metaloproteínas , Zeolitas , Catálisis , Cobre/química , Hierro/química , Metano/química , Metanol/química , Zeolitas/química
5.
Angew Chem Int Ed Engl ; : e202409826, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023384

RESUMEN

Solvents can significantly influence chemical reactions in condensed phases. Their critical properties are increasingly recognized in various research domains such as organic synthesis and biomass valorization. However, in semiconductor photocatalysis, solvents are primarily viewed as mediums for dissolving and diffusing substances, with their potential beneficial effects on photocatalytic conversions often overlooked. Additionally, common photocatalysis solvents like acetonitrile (ACN) pose serious safety and environmental concerns. In this study, we demonstrate that novel and safe green solvents, such as γ-valerolactone (GVL), can significantly enhance the performance of semiconductor photocatalysis for C-H bond activation. Non-specific solvent-solute interactions are the primary contributors to increased photocatalytic activity in the self-coupling of benzylic compounds. Specifically, GVL's large dielectric constant and high refractive index lower the energy barrier for the rate-determining C-H bond activation step, facilitating a faster coupling reaction. The versatility of GVL is further demonstrated in reactions with multiple reagents and in various oxidation and reduction photocatalytic systems beyond classic C-H bond activation. This work not only pioneers the use of green solvents but also provides comprehensive insights for proper solvent selection in semiconductor photocatalysis.

6.
Angew Chem Int Ed Engl ; 63(10): e202317257, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38128012

RESUMEN

Lignin represents the largest aromatic carbon resource in plants, holding significant promise as a renewable feedstock for bioaromatics and other cyclic hydrocarbons in the context of the circular bioeconomy. However, the methoxy groups of aryl methyl ethers, abundantly found in technical lignins and lignin-derived chemicals, limit their pertinent chemical reactivity and broader applicability. Unlocking the phenolic hydroxyl functionality through O-demethylation (ODM) has emerged as a valuable approach to mitigate this need and enables further applications. In this review, we provide a comprehensive summary of the progress in the valorization of technical lignin and lignin-derived chemicals via ODM, both catalytic and non-catalytic reactions. Furthermore, a detailed analysis of the properties and potential applications of the O-demethylated products is presented, accompanied by a systematic overview of available ODM reactions. This review primarily focuses on enhancing the phenolic hydroxyl content in lignin-derived species through ODM, showcasing its potential in the catalytic funneling of lignin and value-added applications. A comprehensive synopsis and future outlook are included in the concluding section of this review.

7.
Angew Chem Int Ed Engl ; 62(6): e202215737, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478093

RESUMEN

Via hydrothermal synthesis of Sn-Al gels, mild dealumination and ion exchange, a bimetallic Sn-Ni-Beta catalyst was prepared which can convert glucose to methyl lactate (MLA) and methyl vinyl glycolate (MVG) in methanol at yields of 71.2 % and 10.2 %, respectively. Results from solid-state magic-angle spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, transmission electron microscopy, spectroscopic analysis, probe-temperature-programmed desorption, and density functional theory calculations conclusively reveal that the openness of the Sn sites, such as by the formation of [(SiO)3 -Sn-OH] entities, is governed by an adjacent metal cation such as Ni2+ , Co2+ , and Mn2+ . This relies on the low structure-defective pore channel, provided by the current synthesis scheme, and the specific silica hydroxyl anchor point is associated with the incorporation of Sn for additional and precise metal ion localization. The presence of metal cations significantly improved the catalytic performance of Sn-Ni-Beta for glucose isomerization and conversion to MLA of sugar compared with Sn-Beta.

8.
J Am Chem Soc ; 144(42): 19305-19316, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36219763

RESUMEN

The direct conversion of methane to methanol would have a wide reaching environmental and industrial impact. Copper-containing zeolites can perform this reaction at low temperatures and pressures at a previously defined O2-activated [Cu2O]2+ site. However, after autoreduction of the copper-containing zeolite mordenite and removal of the [Cu2O]2+ active site, the zeolite is still methane reactive. In this study, we use diffuse reflectance UV-vis spectroscopy, magnetic circular dichroism, resonance Raman spectroscopy, electron paramagnetic resonance, and X-ray absorption spectroscopy to unambiguously define a mononuclear [CuOH]+ as the CH4 reactive active site of the autoreduced zeolite. The rigorous identification of a mononuclear active site allows a reactivity comparison to the previously defined [Cu2O]2+ active site. We perform kinetic experiments to compare the reactivity of the [CuOH]+ and [Cu2O]2+ sites and find that the binuclear site is significantly more reactive. From the analysis of density functional theory calculations, we elucidate that this increased reactivity is a direct result of stabilization of the [Cu2OH]2+ H-atom abstraction product by electron delocalization over the two Cu cations via the bridging ligand. This significant increase in reactivity from electron delocalization over a binuclear active site provides new insights for the design of highly reactive oxidative catalysts.


Asunto(s)
Zeolitas , Zeolitas/química , Cobre/química , Metano/química , Dominio Catalítico , Metanol/química , Ligandos , Modelos Moleculares , Oxígeno/química , Espectroscopía de Resonancia por Spin del Electrón , Cationes
9.
Nature ; 536(7616): 317-21, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535535

RESUMEN

An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts.

10.
Chem Soc Rev ; 50(7): 4259-4298, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33687387

RESUMEN

In the context of a carbon neutral economy, catalytic CO2 hydrogenation to methanol is one crucial technology for CO2 mitigation providing solutions for manufacturing future fuels, chemicals, and materials. However, most of the presently known catalyst systems are used at temperatures over 220 °C, which limits the theoretical yield of methanol production due to the exothermic nature of this transformation. In this review, we summarize state-of-the-art catalysts, focusing on the rationales behind, for CO2 hydrogenation to methanol at temperatures lower than 170 °C. Both hydrogenation with homogeneous and heterogeneous catalysts is covered. Typically, additives (alcohols, amines or aminoalcohols) are used to transform CO2 into intermediates, which can further be reduced into methanol. In the first part, molecular catalysts are discussed, organized into: (1) monofunctional, (2) M/NH bifunctional, and (3) aromatization-dearomatization bifunctional molecular catalysts. In the second part, heterogeneous catalysts are elaborated, organized into: (1) metal/metal or metal/support, (2) active-site/N or active-site/OH bifunctional heterogeneous catalysts, and (3) cooperation of catalysts and additives in a tandem process via crucial intermediates. Although many insights have been gained in this transformation, in particular for molecular catalysts, the mechanisms in the presence of heterogeneous catalysts remain descriptive and insights unclear.

11.
J Am Chem Soc ; 143(39): 16243-16255, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34570975

RESUMEN

α-Fe(II) active sites in iron zeolites catalyze N2O decomposition and form highly reactive α-O that selectively oxidizes unreactive hydrocarbons, such as methane. How these α-Fe(II) sites are formed remains unclear. Here different methods of iron introduction into zeolites are compared to derive the limiting factors of Fe speciation to α-Fe(II). Postsynthetic iron introduction procedures on small pore zeolites suffer from limited iron diffusion and dispersion leading to iron oxides. In contrast, by introducing Fe(III) in the hydrothermal synthesis mixture of the zeolite (one-pot synthesis) and the right treatment, crystalline CHA can be prepared with >1.6 wt % Fe, of which >70% is α-Fe(II). The effect of iron on the crystallization is investigated, and the intermediate Fe species are tracked using UV-vis-NIR, FT-IR, and Mössbauer spectroscopy. These data are supplemented with online mass spectrometry in each step, with reactivity tests in α-O formation and with methanol yields in stoichiometric methane activation at room temperature and pressure. We recover up to 134 µmol methanol per gram in a single cycle through H2O/CH3CN extraction and 183 µmol/g through steam desorption, a record yield for iron zeolites. A general scheme is proposed for iron speciation in zeolites through the steps of drying, calcination, and activation. The formation of two cohorts of α-Fe(II) is discovered, one before and one after high temperature activation. We propose the latter cohort depends on the reshuffling of aluminum in the zeolite lattice to accommodate thermodynamically favored α-Fe(II).

12.
J Am Chem Soc ; 143(19): 7531-7540, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33970624

RESUMEN

Using UV-vis and resonance Raman spectroscopy, we identify a [Cu2O]2+ active site in O2 and N2O activated Cu-CHA that reacts with methane to form methanol at low temperature. The Cu-O-Cu angle (120°) is smaller than that for the [Cu2O]2+ core on Cu-MFI (140°), and its coordination geometry to the zeolite lattice is different. Site-selective kinetics obtained by operando UV-vis show that the [Cu2O]2+ core on Cu-CHA is more reactive than the [Cu2O]2+ site in Cu-MFI. From DFT calculations, we find that the increased reactivity of Cu-CHA is a direct reflection of the strong [Cu2OH]2+ bond formed along the H atom abstraction reaction coordinate. A systematic evaluation of these [Cu2O]2+ cores reveals that the higher O-H bond strength in Cu-CHA is due to the relative orientation of the two planes of the coordinating bidentate O-Al-O T-sites that connect the [Cu2O]2+ core to the zeolite lattice. This work along with our earlier study ( J. Am. Chem. Soc, 2018, 140, 9236-9243) elucidates how zeolite lattice constraints can influence active site reactivity.


Asunto(s)
Cobre/química , Metano/química , Oxígeno/química , Dominio Catalítico , Oxidación-Reducción , Espectrofotometría Ultravioleta , Espectrometría Raman
13.
Proc Natl Acad Sci U S A ; 115(48): 12124-12129, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30429333

RESUMEN

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


Asunto(s)
Benceno/química , Hierro/química , Zeolitas/química , Catálisis , Dominio Catalítico , Hidroxilación , Cinética , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Oxígeno/química , Fenol/química
14.
Proc Natl Acad Sci U S A ; 115(18): 4565-4570, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29610304

RESUMEN

Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. Density functional theory calculations clarify how the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.


Asunto(s)
Hierro/química , Zeolitas/química , Zeolitas/metabolismo , Catálisis , Dominio Catalítico , Hidroxilación/fisiología , Hierro/metabolismo , Metano/química , Metano/metabolismo , Metanol/química , Modelos Moleculares , Estructura Molecular , Oxígeno/química , Espectrofotometría/métodos
15.
Angew Chem Int Ed Engl ; 60(22): 12204-12223, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32833281

RESUMEN

Fossil-based platform molecules such as ethylene and ethylene oxide currently serve as the primary feedstock for the C2 -based chemical industry. However, in the search for a more sustainable chemical industry, fossil-based resources may preferentially be replaced by renewable alternatives, provided there is realistic economic feasibility. This Review compares and critically discusses several production routes toward bio-based structural analogues of ethylene oxide and the required adaptations for their implementation in state-of-the-art C2 -based chemical processes. For example, glycolaldehyde, a structural analogue obtainable from carbohydrates by atom-economic retro-aldol reactions, may replace ethylene oxide's leading role. This alternative chemical route may not only allow the carbon footprint of conventional chemicals production to be lowered, but the introduction of a bio-based pathway may also contribute to safer production processes. Where possible, challenges, drawbacks, and prospects are highlighted.

16.
Chem Rev ; 118(5): 2718-2768, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29256242

RESUMEN

Metal-exchanged zeolites are a class of heterogeneous catalysts that perform important functions ranging from selective hydrocarbon oxidation to remediation of NO x pollutants. Among these, copper and iron zeolites are remarkably reactive, hydroxylating methane and benzene selectively at low temperature to form methanol and phenol, respectively. In these systems, reactivity occurs at well-defined molecular transition metal active sites, and in this review we discuss recent advances in the spectroscopic characterization of these active sites and their reactive intermediates. Site-selective spectroscopy continues to play a key role, making it possible to focus on active sites that exist within a distribution of inactive spectator metal centers. The definition of the geometric and electronic structures of metallozeolites has advanced to the level of bioinorganic chemistry, enabling direct comparison of metallozeolite active sites to functionally analogous Fe and Cu sites in biology. We identify significant parallels and differences in the strategies used by each to achieve high reactivity, highlighting potentially interesting mechanisms to tune the performance of synthetic catalysts.


Asunto(s)
Cobre/química , Hierro/química , Oxidorreductasas/química , Zeolitas/química , Catálisis , Dominio Catalítico , Metano/química , Metano/metabolismo , Oxidorreductasas/metabolismo , Teoría Cuántica
17.
Chem Soc Rev ; 48(8): 2366-2421, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30785143

RESUMEN

Heterogeneous catalysis is a promising technology for the valorization of renewable biomass to sustainable advanced fuels and fine chemicals. Porosity and nanostructure are the most versatile features of heterogeneous solid catalysts, which can greatly determine the accessibility of specific active sites, reaction mechanisms, and the selectivity of desirable products. Hence, the precise tuning of porosity and nanostructure has been a potential strategy towards developing novel solid catalysts with indispensable characteristics for efficient biomass valorization. Herein, we present a timely and comprehensive review of the recent advances in catalytic biomass conversions over microporous zeolites, mesoporous silicas, and nanostructured metals/metal oxides. This review covers the catalytic processing of both edible (lipids and starch) and non-edible (lignocellulose) biomass as well as their derived compounds, along with a systematic evaluation of catalyst reusability/kinetic/mechanistic aspects in the relevant processes. The key parameters essential for tailoring particle size, morphology, porosity, acid-base, and redox properties of solid catalysts are emphasized, while discussing the ensuing catalytic effects towards the selective conversion of biomass into desirable chemicals. Special attention has been drawn to understand the role of water in liquid phase biomass conversions as well as the hydrothermal stability and the deactivation of nanoporous catalysts. We believe this comprehensive review will provide new insights towards developing state-of-the-art solid catalysts with well-defined porosity and nanoscale properties for viable biomass conversion.

18.
Angew Chem Int Ed Engl ; 59(8): 3063-3068, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31765514

RESUMEN

An efficient conversion of biorenewable ferulic acid into bio-catechol has been developed. The transformation comprises two consecutive defunctionalizations of the substrate, that is, C-O (demethylation) and C-C (de-2-carboxyvinylation) bond cleavage, occurring in one step. The process only requires heating of ferulic acid with HCl (or H2 SO4 ) as catalyst in pressurized hot water (250 °C, 50 bar N2 ). The versatility is shown on a variety of other (biorenewable) substrates yielding up to 84 % di- (catechol, resorcinol, hydroquinone) and trihydroxybenzenes (pyrogallol, hydroxyquinol), in most cases just requiring simple extraction as work-up.

19.
Chem Soc Rev ; 47(22): 8349-8402, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30226518

RESUMEN

Efficient transformation of biomass to value-added chemicals and high-energy density fuels is pivotal for a more sustainable economy and carbon-neutral society. In this framework, developing potential cascade chemical processes using functionalised heterogeneous catalysts is essential because of their versatile roles towards viable biomass valorisation. Advances in materials science and catalysis have provided several innovative strategies for the design of new appealing catalytic materials with well-defined structures and special characteristics. Promising catalytic materials that have paved the way for exciting scientific breakthroughs in biomass upgrading are carbon materials, metal-organic frameworks, solid phase ionic liquids, and magnetic iron oxides. These fascinating catalysts offer unique possibilities to accommodate adequate amounts of acid-base and redox functional species, hence enabling various biomass conversion reactions in a one-pot way. This review therefore aims to provide a comprehensive account of the most significant advances in the development of functionalised heterogeneous catalysts for efficient biomass upgrading. In addition, this review highlights important progress ensued in tailoring the immobilisation of desirable functional groups on particular sites of the above-listed materials, while critically discussing the role of consequent properties on cascade reactions as well as on other vital processes within the bio-refinery. Current challenges and future opportunities towards a rational design of novel functionalised heterogeneous catalysts for sustainable biomass valorisation are also emphasized.

20.
J Am Chem Soc ; 140(29): 9236-9243, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29954176

RESUMEN

Two [Cu2O]2+ cores have been identified as the active sites of low temperature methane hydroxylation in the zeolite Cu-MOR. These cores have similar geometric and electronic structures, yet different reactivity with CH4: one reacts with a much lower activation enthalpy. In the present study, we couple experimental reactivity and spectroscopy studies to DFT calculations to arrive at structural models of the Cu-MOR active sites. We find that the more reactive core is located in a constricted region of the zeolite lattice. This leads to close van der Waals contact between the substrate and the zeolite lattice in the vicinity of the active site. The resulting enthalpy of substrate adsorption drives the subsequent H atom abstraction step-a manifestation of the "nest" effect seen in hydrocarbon cracking on acid zeolites. This defines a mechanism to tune the reactivity of metal active sites in microporous materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA