Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39212770

RESUMEN

The physiological consequences of environment-induced heat stress (EIHS), caused by prolonged exposure to excess heat and humidity, are largely unknown. The purpose of this investigation was to determine the extent to which EIHS alters cardiac health. We hypothesized that 24 h of EIHS would cause cardiac injury and cellular dysfunction in a murine EIHS model. To test this hypothesis, 7 wk old female mice were housed under thermoneutral (TN) conditions (n=12, 31.2 ± 1.01 °C, 35 ± 0.7% humidity) or EIHS conditions (n=14; 37.6 ± 0.01 °C, 42.0 ± 0.06 % humidity) for 24 h. Environment-induced heat stress increased rectal temperature by 2.1 °C (P< 0.01) and increased subcutaneous temperature by 1.8 °C (P< 0.01). Body weight was decreased by 10% (P=0.03), heart weight/body weight was increased by 26% (P <0.01), and tissue water content was increased by 11% (P<0.05) in EIHS compared to TN. In comparison to TN, EIHS increased protein abundance of heat shock protein (HSP) 27 by 84% (P=0.01); however, HSPs 90, 60, 70, and phosphorylated HSP 27 were similar between groups. Histological inspection of the heart revealed EIHS animals had increased myocyte vacuolation in left ventricle (P=0.01), right ventricle (P<0.01), and septum (P=0.01) compared to TN animals. Biochemical indices are suggestive of mitochondrial remodeling, increased autophagic flux, and robust activation of endoplasmic reticulum stress in hearts from EIHS mice compared to TN mice. These data demonstrate that 1 d of EIHS is sufficient to induce myocardial injury and biochemical dysregulation.

2.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R578-R587, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38708546

RESUMEN

Oxidative stress contributes to heat stress (HS)-mediated alterations in skeletal muscle; however, the extent to which biological sex mediates oxidative stress during HS remains unknown. We hypothesized muscle from males would be more resistant to oxidative stress caused by HS than muscle from females. To address this, male and female pigs were housed in thermoneutral conditions (TN; 20.8 ± 1.6°C; 62.0 ± 4.7% relative humidity; n = 8/sex) or subjected to HS (39.4 ± 0.6°C; 33.7 ± 6.3% relative humidity) for 1 (HS1; n = 8/sex) or 7 days (HS7; n = 8/sex) followed by collection of the oxidative portion of the semitendinosus. Although HS increased muscle temperature, by 7 days, muscle from heat-stressed females was cooler than muscle from heat-stressed males (0.3°C; P < 0.05). Relative protein abundance of 4-hydroxynonenal (4-HNE)-modified proteins increased in HS1 females compared with TN (P = 0.05). Furthermore, malondialdehyde (MDA)-modified proteins and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentration, a DNA damage marker, was increased in HS7 females compared with TN females (P = 0.05). Enzymatic activities of catalase and superoxide dismutase (SOD) remained similar between groups; however, glutathione peroxidase (GPX) activity decreased in HS7 females compared with TN and HS1 females (P ≤ 0.03) and HS7 males (P = 0.02). Notably, HS increased skeletal muscle Ca2+ deposition (P = 0.05) and was greater in HS1 females compared with TN females (P < 0.05). Heat stress increased sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA)2a protein abundance (P < 0.01); however, Ca2+ ATPase activity remained similar between groups. Overall, despite having lower muscle temperature, muscle from heat-stressed females had increased markers of oxidative stress and calcium deposition than muscle from males following identical environmental exposure.NEW & NOTEWORTHY Heat stress is a global threat to human health and agricultural production. We demonstrated that following 7 days of heat stress, skeletal muscle from females was more susceptible to oxidative stress than muscle from males in a porcine model, despite cooler muscle temperatures. The vulnerability to heat stress-induced oxidative stress in females may be driven, at least in part, by decreased antioxidant capacity and calcium dysregulation.


Asunto(s)
Respuesta al Choque Térmico , Músculo Esquelético , Estrés Oxidativo , Animales , Femenino , Masculino , Músculo Esquelético/metabolismo , Respuesta al Choque Térmico/fisiología , Factores Sexuales , Trastornos de Estrés por Calor/metabolismo , Trastornos de Estrés por Calor/fisiopatología , Porcinos , Modelos Animales de Enfermedad , Sus scrofa
3.
Exerc Sport Sci Rev ; 52(1): 31-38, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38126403

RESUMEN

Duchenne muscular dystrophy (DMD), caused by deficiency of functional dystrophin protein, is a fatal, progressive muscle disease that frequently includes metabolic dysregulation. Herein, we explore the physiologic consequences of dystrophin deficiency within the context of obesity and insulin resistance. We hypothesized that dystrophin deficiency increases the frequency of insulin resistance, and insulin resistance potentiates muscle pathology caused by dystrophin deficiency.


Asunto(s)
Resistencia a la Insulina , Distrofia Muscular de Duchenne , Humanos , Distrofina/metabolismo , Músculo Esquelético/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R692-R711, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37811713

RESUMEN

Duchenne muscular dystrophy (DMD), a progressive muscle disease caused by the absence of functional dystrophin protein, is associated with multiple cellular, physiological, and metabolic dysfunctions. As an added complication to the primary insult, obesity/insulin resistance (O/IR) is frequently reported in patients with DMD; however, how IR impacts disease severity is unknown. We hypothesized a high-fat, high-sucrose diet (HFHSD) would induce O/IR, exacerbate disease severity, and cause metabolic alterations in dystrophic mice. To test this hypothesis, we treated 7-wk-old mdx (disease model) and C57 mice with a control diet (CD) or an HFHSD for 15 wk. The HFHSD induced insulin resistance, glucose intolerance, and hyperglycemia in C57 and mdx mice. Of note, mdx mice on CD were also insulin resistant. In addition, visceral adipose tissue weights were increased with HFHSD in C57 and mdx mice though differed by genotype. Serum creatine kinase activity and histopathological analyses using Masson's trichrome staining in the diaphragm indicated muscle damage was driven by dystrophin deficiency but was not augmented by diet. In addition, markers of inflammatory signaling, mitochondrial abundance, and autophagy were impacted by disease but not diet. Despite this, in addition to disease signatures in CD-fed mice, metabolomic and lipidomic analyses demonstrated a HFHSD caused some common changes in C57 and mdx mice and some unique signatures of O/IR within the context of dystrophin deficiency. In total, these data revealed that in mdx mice, 15 wk of HFHSD did not overtly exacerbate muscle injury but further impaired the metabolic status of dystrophic muscle.


Asunto(s)
Resistencia a la Insulina , Distrofia Muscular de Duchenne , Humanos , Animales , Ratones , Ratones Endogámicos mdx , Distrofina/genética , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Sacarosa/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad
5.
J Therm Biol ; 113: 103492, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37055111

RESUMEN

Prolonged exposure to heat can lead to environment-induced heat stress (EIHS), which may jeopardize human health, but the extent to which EIHS affects cardiac architecture and myocardial cell health are unknown. We hypothesized EIHS would alter cardiac structure and cause cellular dysfunction. To test this hypothesis, 3-mo old female pigs were exposed to thermoneutral (TN; 20.6 ± 0.2 °C; n = 8) or EIHS (37.4 ± 0.2 °C; n = 8) conditions for 24 h, hearts were removed and dimensions measured, and portions of the left ventricle (LV) and right ventricle (RV) were collected. Environment-induced heat stress increased rectal temperature 1.3 °C (P < 0.01), skin temperature 11 °C (P < 0.01) and respiratory rate 72 breaths per minute (P < 0.01). Heart weight and length (apex to base) were decreased by 7.6% (P = 0.04) and 8.5% (P = 0.01), respectively, by EIHS, but heart width was similar between groups. Left ventricle wall thickness was increased (22%; P = 0.02) and water content was decreased (8.6%; P < 0.01) whereas in RV, wall thickness was decreased (26%; P = 0.04) and water content was similar in EIHS compared to TN. We also discovered ventricle-specific biochemical changes such that in RV EIHS increased heat shock proteins, decreased AMPK and AKT signaling, decreased activation of mTOR (35%; P < 0.05), and increased expression of proteins that participate in autophagy. In LV, heat shock proteins, AMPK and AKT signaling, activation of mTOR, and autophagy-related proteins were largely similar between groups. Biomarkers suggest EIHS-mediated reductions in kidney function. These data demonstrate EIHS causes ventricular-dependent changes and may undermine cardiac health, energy homeostasis, and function.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Trastornos de Estrés por Calor , Animales , Femenino , Humanos , Trastornos de Estrés por Calor/veterinaria , Proteínas de Choque Térmico , Respuesta al Choque Térmico , Proteínas Proto-Oncogénicas c-akt , Porcinos , Serina-Treonina Quinasas TOR , Ventrículos Cardíacos/fisiopatología
6.
J Therm Biol ; 97: 102900, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33863453

RESUMEN

Heat stress (HS) poses a major threat to human health and agricultural production. Oxidative stress and mitochondrial dysfunction appear to play key roles in muscle injury caused by HS. We hypothesized that mitoquinol (MitoQ), would alleviate oxidative stress and cellular dysfunction in skeletal muscle during HS. To address this, crossbred barrows (male pigs) were treated with placebo or MitoQ (40 mg/d) and were then exposed to thermoneutral (TN; 20 °C) or HS (35 °C) conditions for 24 h. Pigs were euthanized following the environmental challenge and the red portion of the semitendinosus (STR) was collected for analysis. Unexpectedly, malondialdehyde concentration, an oxidative stress marker, was similar between environmental and supplement treatments. Heat stress decreased LC3A/B-I (p < 0.05) and increased the ratio of LC3A/B-II/I (p < 0.05), while p62 was similar among groups suggesting increased degradation of autophagosomes during HS. These outcomes were in disagreement with our previous results in muscle from gilts (female pigs). To probe the impact of biological sex on HS-mediated injury in skeletal muscle, we compared STR from these barrows to archived STR from gilts subjected to a similar environmental intervention. We confirmed our previous findings of HS-mediated dysfunction in muscle from gilts but not barrows. These data also raise the possibility that muscle from gilts is more susceptible to environment-induced hyperthermia than muscle from barrows.


Asunto(s)
Antioxidantes/farmacología , Respuesta al Choque Térmico/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Compuestos Organofosforados/farmacología , Caracteres Sexuales , Ubiquinona/análogos & derivados , Animales , Autofagia/efectos de los fármacos , Femenino , Masculino , Malondialdehído/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Porcinos , Ubiquinona/farmacología
7.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1096-R1106, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256682

RESUMEN

Heat-stressed pigs experience metabolic alterations, including altered insulin profiles, reduced lipid mobilization, and compromised intestinal integrity. This is bioenergetically distinct from thermal neutral pigs on a similar nutritional plane. To delineate differences in substrate preferences between direct and indirect (via reduced feed intake) heat stress effects, skeletal muscle fuel metabolism was assessed. Pigs (35.3 ± 0.8 kg) were randomly assigned to three treatments: thermal neutral fed ad libitum (TN; 21°C, n = 8), heat stress fed ad libitum (HS; 35°C, n = 8), and TN, pair-fed/HS intake (PF; n = 8) for 7 days. Body temperature (TB) and feed intake (FI) were recorded daily. Longissimus dorsi muscle was biopsied for metabolic assays on days -2, 3, and 7 relative to initiation of environmental treatments. Heat stress increased TB and decreased FI ( P < 0.05). Heat stress inhibited incomplete fatty acid oxidation and glucose oxidation ( P < 0.05). Metabolic flexibility decreased in HS pigs compared with TN and PF controls ( P < 0.05). Both phosphofructokinase and pyruvate dehydrogenase (PDH) activities increased in PF ( P < 0.05); however, TN and HS did not differ. Heat stress inhibited citrate synthase and ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activities ( P < 0.05). Heat stress did not alter PDH phosphorylation or carnitine palmitoyltransferase 1 abundance but reduced acetyl-CoA carboxylase 1 (ACC1) protein abundance ( P < 0.05). In conclusion, HS decreased skeletal muscle fatty acid oxidation and metabolic flexibility, likely involving ß-HAD and ACC regulation.


Asunto(s)
Temperatura Corporal/fisiología , Trastornos de Estrés por Calor , Respuesta al Choque Térmico/fisiología , Músculo Esquelético/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Suplementos Dietéticos/efectos adversos , Ingestión de Alimentos/fisiología , Estrés Fisiológico/fisiología , Porcinos/crecimiento & desarrollo
8.
J Therm Biol ; 72: 73-80, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29496018

RESUMEN

Prolonged environment-induced hyperthermia causes morbidities and mortality in humans and animals and appears to cause organ-specific injury and dysfunction. We have previously determined autophagic dysfunction and apoptotic signaling in oxidative skeletal muscle following prolonged hyperthermia. The aim of this investigation was to extend our knowledge regarding the early chronology of heat stress-mediated apoptotic and autophagic signaling in oxidative skeletal muscle. We hypothesized that 2, 4, and 6 h of hyperthermia would increase apoptosis and autophagy in oxidative skeletal muscle compared to thermoneutral (TN) conditions. Pigs were assigned to four groups (n = 8/group) and exposed to environmental heat stress (37 °C) for 0, 2, 4, or 6 h. Immediately following environmental exposure animals were euthanized and the red portion of the semitendinosus was collected. Markers of apoptotic signaling were increased following 2 h of heating but returned to baseline thereafter, while caspase 3 activity remained elevated 2-3 fold (p < .05) throughout the hyperthermic period. Heat stress increased (p < .05) markers of autophagic activation, and nucleation as well as autophagosome formation and degradation linearly throughout the heating intervention. In addition, 6 h of hyperthermia increased (p < .05) markers of mitophagy. These data suggest that apoptotic signaling precedes increased autophagy during acute heat stress in oxidative skeletal muscle.


Asunto(s)
Apoptosis , Autofagia , Fiebre/metabolismo , Respuesta al Choque Térmico , Músculo Esquelético/metabolismo , Estrés Oxidativo , Animales , Calor , Mitofagia , Transducción de Señal , Sus scrofa
9.
J Therm Biol ; 74: 160-169, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29801622

RESUMEN

Prolonged heat stress represents a continuing threat to human health and agricultural production. Despite the broad, negative impact of prolonged hyperthermia little is known about underlying pathological mechanisms leading to negative health outcomes, which has limited the development of etiological interventions and left clinicians and producers with only cooling and rehydration strategies. The purpose of this investigation was to determine the extent to which prolonged environment-induced hyperthermia altered autophagy in oxidative skeletal muscle in a large animal model, serving the dual purpose of accurately modeling human physiology as well as agricultural production. We hypothesized that prolonged hyperthermia would induce autophagy in skeletal muscle, independent of the accompanying caloric restriction. To test this hypothesis pigs were treated as follows: thermoneutral (20 °C), heat stress (35 °C), or were held under thermoneutral conditions but pair-fed to the heat stress group for seven days. Upon euthanasia the red portion of the semitendinosus was collected. We found that prolonged hyperthermic exposure increased oxidative stress without a corresponding change in antioxidant enzyme activities. Hyperthermia prevented initiation of autophagy despite increased markers of nucleation, elongation and autophagosome formation. However, p62 relative protein abundance, which is inversely correlated with autophagic degradation, was strongly increased suggesting suppressed degradation of autophagosomes. Markers of mitophagy and mitochondrial abundance were largely similar between groups. These data indicate that faulty autophagy plays a key role in hyperthermic muscle dysfunction.


Asunto(s)
Autofagia , Fiebre/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo , Animales , Ambiente , Fiebre/veterinaria , Respuesta al Choque Térmico , Mitofagia , Sus scrofa
10.
Am J Physiol Heart Circ Physiol ; 312(1): H128-H140, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27836895

RESUMEN

Duchenne Muscular Dystrophy (DMD) is associated with progressive cardiac pathology; however, the SIRT1/PGC1-α activator quercetin may cardioprotect dystrophic hearts. We tested the extent to which long-term 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in Mdx/Utrn+/- mice. At 2 mo, Mdx/Utrn+/- mice were fed quercetin-enriched (Mdx/Utrn+/--Q) or control diet (Mdx/Utrn+/-) for 8 mo. Control C57BL/10 (C57) animals were fed a control diet for 10 mo. Cardiac function was quantified by MRI at 2 and 10 mo. Spontaneous physical activity was quantified during the last week of treatment. At 10 mo hearts were excised for histological and biochemical analysis. Quercetin feeding improved various physiological indexes of cardiac function in diseased animals. Mdx/Utrn+/--Q also engaged in more high-intensity physical activity than controls. Histological analyses of heart tissues revealed higher expression and colocalization of utrophin and α-sarcoglycan. Lower abundance of fibronectin, cardiac damage (Hematoxylin Eosin-Y), and MMP9 were observed in quercetin-fed vs. control Mdx/Utrn+/- mice. Quercetin evoked higher protein abundance of PGC-1α, cytochrome c, ETC complexes I-V, citrate synthase, SOD2, and GPX compared with control-fed Mdx/Utrn+/- Quercetin decreased abundance of inflammatory markers including NFκB, TGF-ß1, and F4/80 compared with Mdx/Utrn+/-; however, P-NFκB, P-IKBα, IKBα, CD64, and COX2 were similar between groups. Dietary quercetin enrichment improves cardiac function in aged Mdx/Utrn+/- mice and increases mitochondrial protein content and dystrophin glycoprotein complex formation. Histological analyses indicate a marked attenuation in pathological cardiac remodeling and indicate that long-term quercetin consumption benefits the dystrophic heart. NEW & NOTEWORTHY: The current investigation provides first-time evidence that quercetin provides physiological cardioprotection against dystrophic pathology and is associated with improved spontaneous physical activity. Secondary findings suggest that quercetin-dependent outcomes are in part due to PGC-1α pathway activation.


Asunto(s)
Antioxidantes/farmacología , Corazón/efectos de los fármacos , Distrofia Muscular Animal/fisiopatología , Quercetina/farmacología , Animales , Antígenos de Diferenciación/efectos de los fármacos , Antígenos de Diferenciación/metabolismo , Western Blotting , Citrato (si)-Sintasa/efectos de los fármacos , Citrato (si)-Sintasa/metabolismo , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Citocromos c/efectos de los fármacos , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Proteínas del Complejo de Cadena de Transporte de Electrón/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Fibronectinas/metabolismo , Alimentos Fortificados , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Imagen por Resonancia Magnética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos mdx , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Actividad Motora , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne , Miocardio/metabolismo , Miocardio/patología , Inhibidor NF-kappaB alfa/efectos de los fármacos , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Receptores de IgG/efectos de los fármacos , Receptores de IgG/metabolismo , Sarcoglicanos/metabolismo , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Utrofina/genética , Utrofina/metabolismo
11.
Biol Reprod ; 97(3): 426-437, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025092

RESUMEN

Hyperthermia or heat stress (HS) occurs when heat dissipation mechanisms are overwhelmed by external and internal heat production. Hyperthermia negatively affects reproduction and potentially compromises oocyte integrity and reduces developmental competence of ensuing embryos. Autophagy is the process by which cells recycle energy through the reutilization of cellular components and is activated by a variety of stressors. Study objectives were to characterize autophagy-related proteins in the ovary following cyclical HS during the follicular phase. Twelve gilts were synchronized and subjected to cyclical HS (n = 6) or thermal neutral (n = 6) conditions for 5 days during the follicular phase. Ovarian protein abundance of Beclin 1 and microtubule associated protein light chain 3 beta II were each elevated as a result of HS (P = 0.001 and 0.003, respectively). The abundance of the autophagy related (ATG)12-ATG5 complex was decreased as a result of HS (P = 0.002). Regulation of autophagy and apoptosis occurs in tight coordination, and B-cell lymphoma (BCL)2 and BCL2L1 are involved in regulating both processes. BCL2L1 protein abundance, as detected via immunofluorescence, was increased in both the oocyte (∼1.6-fold; P < 0.01) and granulosa cells of primary follicles (∼1.4-fold P < 0.05) of HS ovaries. These results suggest that ovarian autophagy induction occurs in response to HS during the follicular phase, and that HS increases anti-apoptotic signaling in oocytes and early follicles. These data contribute to the biological understanding of how HS acts as an environmental stress to affect follicular development and negatively impact reproduction.


Asunto(s)
Autofagia , Trastornos de Estrés por Calor/patología , Folículo Ovárico/patología , Ovario/patología , Animales , Apoptosis/genética , Femenino , Fiebre/patología , Genes bcl-2/genética , Células de la Granulosa/metabolismo , Calor , Infertilidad Femenina/etiología , Infertilidad Femenina/fisiopatología , Folículo Ovárico/ultraestructura , Ovario/ultraestructura , Embarazo , Transducción de Señal/genética , Sus scrofa , Porcinos , Vacuolas/ultraestructura , Proteína bcl-X/genética
12.
Exp Physiol ; 102(6): 635-649, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28192862

RESUMEN

NEW FINDINGS: What is the central question of this study? The central question of this study is to understand whether dietary quercetin enrichment attenuates physiologic, histological, and biochemical indices of cardiac pathology. What is the main finding and its importance? Novel findings from this investigation, in comparison to prior published studies, suggest that mouse strain-dependent cardiac outcomes in performance and remodelling exist. Unlike Mdx/Utrn-/+ mice, mdx mice receiving lifelong quercetin treatment did not exhibit improvements cardiac function. Similar to prior work in Mdx/Utrn-/+ mice, histological evidence of remodelling suggests that quercetin consumption may have benefited hearts of mdx mice. Positive outcomes may be related to indirect markers that suggest improved mitochondrial wellbeing and to selected indices of inflammation that were lower in hearts from quercetin-fed mice. Duchenne muscular dystrophy causes a decline in cardiac health, resulting in premature mortality. As a potential countermeasure, quercetin is a polyphenol possessing inherent anti-inflammatory and antioxidant effects that activate proliferator-activated γ coactivator 1α (PGC-1α), increasing the abundance of mitochondrial biogenesis proteins. We investigated the extent to which lifelong 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in mdx mice. Dystrophic animals were fed a quercetin-enriched or control diet for 12 months, while control C57 mice were fed a control diet. Cardiac function was assessed via 7 T magnetic resonance imaging at 2, 10 and 14 months. At 14 months, hearts were harvested for histology and Western blotting. The results indicated an mdx strain-dependent decline in cardiac performance at 14 months and that dietary quercetin enrichment did not attenuate functional losses. In contrast, histological analyses provided evidence that quercetin feeding was associated with decreased fibronectin and indirect damage indices (Haematoxylin and Eosin) compared with untreated mdx mice. Dietary quercetin enrichment increased cardiac protein abundance of PGC-1α, cytochrome c, electron transport chain complexes I-V, citrate synthase, superoxide dismutase 2 and glutathione peroxidase (GPX) versus untreated mdx mice. The protein abundance of the inflammatory markers nuclear factor-κB, phosphorylated nuclear factor kappa beta (P-NFκB) and phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (P-IKBα) was decreased by quercetin compared with untreated mdx mice, while preserving nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha( IKBα) compared with mdx mice. Furthermore, quercetin decreased transforming growth factor-ß1, cyclooxygenase-2 (COX2) and macrophage-restricted F4/80 protein (F4/80) versus untreated mdx mice. The data suggest that long-term quercetin enrichment does not impact physiological parameters of cardiac function but improves indices of mitochondrial biogenesis and antioxidant enzymes, facilitates dystrophin-associated glycoprotein complex (DGC) assembly and decreases inflammation in dystrophic hearts.


Asunto(s)
Cardiotónicos/administración & dosificación , Distrofia Muscular de Duchenne/tratamiento farmacológico , Quercetina/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Ciclooxigenasa 2/metabolismo , Dieta , Modelos Animales de Enfermedad , Distrofina/metabolismo , Corazón/efectos de los fármacos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , FN-kappa B/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
13.
J Physiol ; 594(20): 6037-6053, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27094343

RESUMEN

KEY POINT: PGC-1α pathway activation has been shown to decrease disease severity and can be driven by quercetin. Oral quercetin supplementation protected respiratory function for 4-6 months during a 12 month dosing regimen. This transient protection was probably due to a failure to sustain elevated SIRT1 activity and downstream PGC-1α signalling. Quercetin supplementation may be a beneficial treatment as part of a cocktail provided continued SIRT1 activity elevation is achieved. ABSTRACT: Duchenne muscular dystrophy (DMD) impacts 1 : 3500 boys and leads to muscle dysfunction culminating in death due to respiratory or cardiac failure. There is an urgent need for effective therapies with the potential for immediate application for this patient population. Quercetin, a flavonoid with an outstanding safety profile, may provide therapeutic relief to DMD patients as the wait for additional therapies continues. This study evaluated the capacity of orally administered quercetin (0.2%) in 2 month old mdx mice to improve respiratory function and end-point functional and histological outcomes in the diaphragm following 12 months of treatment. Respiratory function was protected for the first 4-6 months of treatment but appeared to become insensitive to quercetin thereafter. Consistent with this, end-point functional measures were decreased and histopathological measures were more severe in dystrophic muscle compared to C57 and similar between control-fed and quercetin-fed mdx mice. To better understand the transient nature of improved respiratory function, we measured PGC-1α pathway activity, which is suggested to be up-regulated by quercetin supplementation. This pathway was largely suppressed in dystrophic muscle compared to healthy muscle, and at the 14 month time point dietary quercetin enrichment did not increase expression of downstream effectors. These data support the efficacy of quercetin as an intervention for DMD in skeletal muscle, and also indicate the development of age-dependent quercetin insensitivity when continued supplementation fails to drive the PGC-1α pathway. Continued study is needed to determine if this is related to disease severity, age or other factors.


Asunto(s)
Distrofina/deficiencia , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Quercetina/administración & dosificación , Respiración/efectos de los fármacos , Administración Oral , Animales , Diafragma/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos
14.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1288-96, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27009052

RESUMEN

Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts (n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle.


Asunto(s)
Citocinas/inmunología , Trastornos de Estrés por Calor/inmunología , Respuesta al Choque Térmico/inmunología , Mediadores de Inflamación/inmunología , Músculo Esquelético/inmunología , Miositis/inmunología , Animales , Inflamasomas/inmunología , Especies Reactivas de Oxígeno/inmunología , Transducción de Señal/inmunología , Porcinos
15.
FASEB J ; 28(4): 1600-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24347611

RESUMEN

The purpose of this investigation was to determine the extent to which dystrophin insufficiency caused histomorphological changes in a novel pig model of Becker muscular dystrophy. In our procedures, we used a combination of biochemical approaches, including quantitative PCR and Western blots, along with a histological analysis using standard and immunohistological measures. We found that 8-wk-old male affected pigs had a 70% reduction in dystrophin protein abundance in the diaphragm, psoas major, and longissimus lumborum and a 5-fold increase in serum creatine kinase activity compared with healthy male littermates. Dystrophin insufficiency in the diaphragm and the longissimus resulted in muscle histopathology with disorganized fibrosis that often colocalized with fatty infiltration but not the psoas. Affected animals also had an 80-85% reduction in α-sarcoglycan localization in these muscles, indicating compromised assembly of the dystrophin glycoprotein complex. Controls used in this study were 4 healthy male littermates, as they are most closely related to the affected animals. We concluded that pigs with insufficient dystrophin protein expression have a phenotype consistent with human dystrophinopathy patients. Given that and their similarity in body size and physiology to humans, we further conclude that this pig line is an appropriate translational model for dystrophinopathies.


Asunto(s)
Distrofina/genética , Glicoproteínas/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Sustitución de Aminoácidos , Animales , Western Blotting , Creatina Quinasa/sangre , Diafragma/metabolismo , Diafragma/patología , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Distrofina/metabolismo , Expresión Génica , Glicoproteínas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Mutación Missense , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcoglicanos/metabolismo , Porcinos
16.
Exp Physiol ; 100(10): 1145-58, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26268822

RESUMEN

NEW FINDINGS: What is the central question of this study? Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) gene transfer as a treatment for Duchenne muscular dystrophy is efficacious even with advanced disease. What is the main finding and its importance? PGC-1α pathway activation strategies may be most effective when initiated at the earliest possible time. Duchenne muscular dystrophy is a progressive and fatal muscle wasting disease caused by a dystrophin deficiency. We previously found that gene transfer of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) increased abundance of utrophin and increased mitochondrial biogenesis using prevention and rescue treatment protocols. Our purpose in this investigation was to determine the extent to which PGC-1α gene transfer would rescue dystrophic muscle following prolonged disease progression. One-year-old mdx mice from our colony were injected in one hindlimb with a virus driving expression of PGC-1α, while the contralateral limb was injected with empty capsid. Three months after viral gene transfer, PGC-1α expression was 40-fold greater than in contralateral limbs. Specific tension was increased by ∼ 60% (P < 0.05), and force produced during the final contraction of a fatigue protocol was 60% greater in treated soleus muscles compared with contralateral control muscles (P < 0.05). Histopathology was not improved by PGC-1α overexpression. Also, while there were numerous differences in gene expression between healthy and dystrophic muscle, there were relatively few differences between PGC-1α-treated limbs and contralateral control limbs. These data indicate that PGC-1α pathway activation may interrupt the disease process even if initiated within the context of advanced disease; however, the mechanism that underlies this functional correction is not apparent.


Asunto(s)
Terapia Genética/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Factores de Transcripción/metabolismo , Transfección , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Endogámicos mdx , Ratones Transgénicos , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Recuperación de la Función , Factores de Tiempo , Factores de Transcripción/genética , Regulación hacia Arriba
17.
Exp Physiol ; 100(1): 12-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25557727

RESUMEN

NEW FINDINGS: What is the central question of this study? Does dietary quercetin enrichment improve biochemical and histological outcomes in hearts from mdx mice? What is the main finding and what is its importance? Biochemical and histological findings suggest that chronic quercetin feeding of mdx mice may improve mitochondrial function and attenuate tissue pathology. Patients with Duchenne muscular dystrophy suffer from cardiac pathology, which causes up to 40% of all deaths because of fibrosis and cardiac complications. Quercetin is a flavonol with anti-inflammatory and antioxidant effects and is also an activator of peroxisome proliferator-activated receptor γ coactivator 1α capable of antioxidant upregulation, mitochondrial biogenesis and prevention of cardiac complications. We sought to determine the extent to which dietary quercetin enrichment prevents (experiment 1) and rescues cardiac pathology (experiment 2) in mdx mice. In experiment 1, 3-week-old mdx mice were fed control chow (C3w6m, n = 10) or chow containing 0.2% quercetin for 6 months (Q3w6m, n = 10). In experiment 2, 3-month-old mdx mice were fed control chow (C3m6m, n = 10) or 0.2% chow containing 0.2% quercetin for 6 months (Q3m6m, n = 10). Hearts were excised for histological and biochemical analyses. In experiment 1, Western blot targets for mitochondrial biogenesis (cytochrome c, P = 0.007) and antioxidant expression (superoxide dismutase 2, P = 0.014) increased in Q3w6m mice compared with C3w6m. Histology revealed increased utrophin (P = 0.025) and decreased matrix metalloproteinase 9 abundance (P = 0.040) in Q3w6m mice compared with C3w6m. In experiment 2, relative (P = 0.023) and absolute heart weights (P = 0.020) decreased in Q3m6m mice compared with C3m6m. Indications of damage (Haematoxylin- and Eosin-stained sections, P = 0.007) and Western blot analysis of transforming growth factor ß1 (P = 0.009) were decreased in Q3m6m mice. Six months of quercetin feeding increased a mitochondrial biomarker, antioxidant protein and utrophin and decreased matrix metalloproteinase 9 in young mice. Given that these adaptations are associated with attenuated cardiac pathology and damage, the present findings may indicate that dietary quercetin enrichment attenuates dystrophic cardiac pathology, but physiological confirmation is needed.


Asunto(s)
Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Suplementos Dietéticos , Mitocondrias Cardíacas/efectos de los fármacos , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Miocardio/patología , Quercetina/farmacología , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Citocromos c/metabolismo , Citoprotección , Modelos Animales de Enfermedad , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos mdx , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Recambio Mitocondrial/efectos de los fármacos , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miocardio/metabolismo , Superóxido Dismutasa/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismo , Utrofina/metabolismo
18.
J Therm Biol ; 53: 143-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26590467

RESUMEN

We recently demonstrated that in utero heat stress (IUHS) alters future tissue accretion in pigs, but whether this is a conserved response among species, is due to the direct effects of heat stress (HS) or mediated by reduced maternal feed intake (FI) is not clear. Study objectives were to compare the quantity and rate of tissue accretion in rats exposed to differing in utero thermal environments while eliminating the confounding effect of dissimilar maternal FI. On d3 of gestation, pregnant Sprague-Dawley rats (189.0±5.9g BW) were exposed to thermoneutral (TN; 22.2±0.1°C; n=8), or HS conditions (cyclical 30 to 34°C; n=8) until d18 of gestation. A third group was pair-fed to HS dams in TN conditions (PFTN; 22.2±0.1°C; n=8) from d4 to d19 of gestation. HS increased dam rectal temperature (p=0.01; 1.3°C) compared to TN and PFTN mothers, and reduced FI (p=0.01; 33%) compared to TN ad libitum fed controls. Although litter size was similar (p=0.97; 10.9 pups/litter), pup birth weight was reduced (p=0.03; 15.4%) in HS compared to PFTN and TN dams. Two male pups per dam [n=8 in utero TN (IUTN); n=8 IUHS; n=8 in utero PFTN (IUPFTN)] were selected from four dams per treatment based on similar gestation length, and body composition was determined using dual-energy x-ray absorptiometry (DXA) on d26, d46, and d66 of postnatal life. Whole-body fat content increased (p=0.01; 11.2%), and whole-body lean tissue decreased (p=0.01; 2.6%) in IUPFTN versus IUTN and IUHS offspring. Whole-body composition was similar between IUHS and IUTN offspring. Epididymal fat pad weight increased (p=0.03; 21.6%) in IUPFTN versus IUHS offspring. In summary and in contrast to pigs, IUHS did not impact rodent body composition during this stage of growth; however, IUPFTN altered the future hierarchy of tissue accretion.


Asunto(s)
Adiposidad , Peso al Nacer , Restricción Calórica , Respuesta al Choque Térmico , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
19.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38706303

RESUMEN

The purpose of this investigation was to establish the role biological sex plays in circulating factors following heat stress (HS). Barrows and gilts (36.8 ±â€…3.7 kg body weight) were kept in either thermoneutral (TN; 20.8 ±â€…1.6 °C; 62.0% ±â€…4.7% relative humidity; n = 8/sex) conditions or exposed to HS (39.4 ±â€…0.6 °C; 33.7% ±â€…6.3% relative humidity) for either 1 (HS1; n = 8/sex) or 7 (HS7; n = 8/sex) d. Circulating glucose decreased as a main effect of the environment (P = 0.03). Circulating non-esterified fatty acid (NEFA) had an environment × sex interaction (P < 0.01) as HS1 barrows had increased NEFA compared to HS1 gilts (P = 0.01) and NEFA from HS7 gilts increased compared to HS1 gilts (P = 0.02) and HS7 barrows (P = 0.04). Cortisol, insulin, glucagon, T3, and T4 were reduced as a main effect of environment (P ≤ 0.01). Creatinine was increased in HS1 and HS7 animals compared to TN (P ≤ 0.01), indicative of decreased glomerular filtration rate. White blood cell populations exhibited differential patterns based on sex and time. Neutrophils and lymphocytes had an environment × sex interaction (P ≤ 0.05) as circulating neutrophils were increased in HS1 barrows compared to TN and HS7 barrows, and HS1 gilts (P ≤ 0.01) and HS7 barrows had less neutrophils compared to TN barrows (P = 0.01), whereas they remained similar in gilts. In contrast, barrow lymphocyte numbers were similar between groups, but in HS7 gilts they were decreased compared to TN and HS1 gilts (P ≤ 0.04). In total, these data demonstrate that HS alters a host of circulating factors and that biological sex mediates, at least in part, the physiological response to HS.


Heat stress (HS) negatively impacts efficient pork production; however, the role of biological sex is largely unknown. The objective of this study was to determine the extent to which HS differentially impacted hematological parameters in barrows and gilts. To address this, 3-mo-old barrows and gilts were exposed to ambient temperature (TN) or constant HS for 1 or 7 d. Following the experimental period, blood was collected for analysis of hormones, metabolites, immune cells, and markers of organ damage. Overall, cortisol, insulin, glucagon, T3, and T4 were reduced following HS. Furthermore, 7 d of HS decreased circulating glucose, albeit slightly. Circulating fatty acids had a sex-specific response as HS1 barrows and HS7 gilts were increased compared to their environmental counterparts, though, these changes are minor compared to those expected with a similar feed restriction. HS caused immune system activation in barrows and gilts; however, circulating levels of specific white blood cells were time- and sex-dependent. Barrows appeared more resistant to HS-mediated kidney injury acutely; however, with continued heating, markers of kidney injury were similar between barrows and gilts. In total, these data suggest biological sex regulates some, but not all, aspects of HS-mediated biological changes in pigs.


Asunto(s)
Ácidos Grasos no Esterificados , Animales , Femenino , Masculino , Porcinos/fisiología , Ácidos Grasos no Esterificados/sangre , Calor/efectos adversos , Factores Sexuales , Glucemia , Respuesta al Choque Térmico
20.
J Anim Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212947

RESUMEN

Study objectives were to evaluate the effects of mitoquinol (MitoQ) on production parameters, gastrointestinal tract (GIT; stomach and small and large intestines) weight, and circulating leukocytes during a 24 h acute heat stress (HS) challenge. Crossbred gilts [n=32; 49.1±2.4 kg body weight (BW)] were blocked by BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n=8; TNCON), 2) TN and MitoQ (n=8; TNMitoQ), 3) HS control (n=8; HSCON;), or 4) HS and MitoQ (n=8; HSMitoQ). Pigs were moved into individual pens and allowed to acclimate for 6 d. The study consisted of two experimental periods (P). During P1 (2 d), all pigs remained in TN conditions (20.6±1.5°C) and were fed ad libitum. During P2 (24 h), pigs were fed ad libitum and exposed to either TN or constant HS (37.3±1.3°C). Mitoquinol (40 mg/d) was orally administered twice daily (0700 and 1800 h) during P1 and P2. As expected, pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (+1.5°C, +8.7°C, and +86 breaths/min, respectively; P<0.01) compared to their TN counterparts. Compared to TN, HS pigs had decreased feed intake (67%; P<0.01) and significant BW loss (+1.5 vs. -1.9 kg, respectively; P<0.01). Total GIT weight was decreased in HS relative to TN pigs (P<0.01), and this was influenced by decreased luminal contents (2.43 vs. 3.26 kg, respectively; P<0.01) and reduced empty GIT mass (3.21 vs. 3.48 kg, respectively; P=0.03). Stomach contents remained similar between TN and HS pigs (P>0.54) but tended to increase in MitoQ relative to CON pigs (0.90 vs. 0.63 kg, respectively; P=0.08). Stomach content as a percentage of the previous 24 h feed intake was increased in HS compared to the TN controls (93 vs. 31%; P<0.01). In contrast, small and large intestinal contents were decreased in HS compared to TN pigs (23 and 49%, respectively; P<0.01). Liver weight decreased in HS relative to TN pigs (1.15 vs. 1.22 kg, respectively; P=0.02), and was decreased in MitoQ compared to CON pigs (1.13 vs. 1.24 kg; P<0.01). Circulating lymphocytes tended to be decreased in HS relative to TN pigs (16%; P=0.07). In summary, acute HS increased all body temperature indices, negatively influenced animal performance, and differentially altered GIT motility as evidenced by decreased gastric emptying and increased intestinal transit. However, MitoQ supplementation did not appear to ameliorate these effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA