Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Comput Chem ; 45(19): 1657-1666, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38551316

RESUMEN

Time-dependent density functional theory (TDDFT) simulations are conducted on a series of chiral gold/silver alloy nanowires to explore whether silver doping can produce an enhancement of circular dichroism at the plasmon resonance in these systems, and to identify the quantum-mechanical origin of the observed effects. We find a strong plasmonic dichroism when one or two helixes of gold atoms are substituted by silver in a linear chiral nanotube, whose pure gold counterpart does not display any plasmonic dichroism, and we rationalize this finding in terms of "decoupling" the destructive interference of excitations in the pure gold nanotube via alloying. However, further attempts to increase the plasmonic dichroism by considering multi-shell gold nanowires in which one entire shell is doped with silver did not produce the desired effect, but rather a decrease in circular dichroism. We show that this latter result is due to a more severe destructive interference in the dipole excitation contributions, and suggest that further amplification should be possible in principle by properly tuning simultaneously the nanowire structure and chemical ordering.

2.
Nanotechnology ; 35(42)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39025079

RESUMEN

Novel graphene-like nanomaterials with a non-zero bandgap are important for the design of gas sensors. The selectivity toward specific targets can be tuned by introducing appropriate functional groups on their surfaces. In this study, we use first-principles simulations, in the form of density functional theory (DFT), to investigate the covalent functionalization of a single-layer graphitized BC6N with azides to yield aziridine-functionalized adducts and explore their possible use to realize ammonia sensors. First, we determine the most favorable sites for physical adsorption and chemical reaction of methylnitrene, arising from the decomposition of methylazide, onto a BC6N monolayer. Then, we examine the thermodynamics of the [1 + 2]-cycloaddition reaction of various phenylnitrenes and perfluorinated phenylnitrenes para-substituted with (R = CO2H, SO3H) groups, demonstrating favorable energetics. We also monitor the effect of the functionalization on the electronic properties of the nanosheets via density of states and band structure analyses. Finally, we test four dBC6N to gBC6N substrates in the sensing of ammonia. We show that, thanks to their hydrogen bonding capabilities, the functionalized BC6N can selectively detect ammonia, with interaction energies varying from -0.54 eV to -1.37 eV, even in presence of competing gas such as CO2and H2O, as also confirmed by analyzing the change in the electronic properties and the values of recovery times near ambient temperature. Importantly, we model the conductance of a selected substrate alone and in presence of NH3to determine its effect on the integrated current, showing that humidity and coverage conditions should be properly tuned to use HO2C-functionalized BC6N-based nanomaterials to develop selective gas sensors for ammonia.

3.
Phys Chem Chem Phys ; 26(25): 17569-17576, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38867581

RESUMEN

Assessing the accuracy of first-principles computational approaches is instrumental to predict electronic excitations in metal nanoclusters with quantitative confidence. Here we describe a validation study on the optical response of a set of monolayer-protected clusters (MPC). The photoabsorption spectra of Ag25(DMBT)18-, Ag24Pt(DMBT)182- and Au24Pt(SC4H9)18, where DMBT is 2,4-dimethylbenzenethiolate and SC4H9 is n-butylthiolate, have been obtained at low temperature and compared with accurate TDDFT calculations. An excellent match between theory and experiment, with typical deviations of less than 0.1 eV, was obtained, thereby validating the accuracy and reliability of the proposed computational framework. Moreover, an analysis of the TDDFT simulations allowed us to ascribe all relevant spectral features to specific transitions between occupied/virtual orbital pairs. The doping effect of Pt on the optical response of these ultrasmall MPC systems was identified and discussed.

4.
Faraday Discuss ; 242(0): 174-192, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36196677

RESUMEN

We present a computational study of the energetics and mechanisms of oxidation of Pt-Mn systems. We use slab models and simulate the oxidation process over the most stable (111) facet at a given Pt2Mn composition to make the problem computationally affordable, and combine Density-Functional Theory (DFT) with neural network potentials and metadynamics simulations to accelerate the mechanistic search. We find, first, that Mn has a strong tendency to alloy with Pt. This tendency is optimally realized when Pt and Mn are mixed in the bulk, but, at a composition in which the Mn content is high enough such as for Pt2Mn, Mn atoms will also be found in the surface outmost layer. These surface Mn atoms can dissociate O2 and generate MnOx species, transforming the surface-alloyed Mn atoms into MnOx surface oxide structures supported on a metallic framework in which one or more vacancy sites are simultaneously created. The thus-formed vacancies promote the successive steps of the oxidation process: the vacancy sites can be filled by surface oxygen atoms, which can then interact with Mn atoms in deeper layers, or subsurface Mn atoms can intercalate into interstitial sites. Both these steps facilitate the extraction of further bulk Mn atoms into MnOx oxide surface structures, and thus the progress of the oxidation process, with typical rate-determining energy barriers in the range 0.9-1.0 eV.

5.
J Phys Chem A ; 126(35): 5890-5899, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36001802

RESUMEN

A time-dependent density functional theory (TDDFT) computational approach is employed to study the optical coupling between a plasmonic system (a Ag50 nanorod) and a fluorescent dye (BODIPY). It is found that the BODIPY dye can interact with a plasmonic system in a rather different and selective way according to the mutual orientation of the fragments. Indeed, (i) the plasmon excitation turns out to be sensitive to the presence of the BODIPY transition and (ii) this can lead to amplify or suppress the resonance accordingly to the relative orientation of the corresponding transition dipoles. To understand the coupling mechanism, we analyze the shape of the induced density in real space and the Individual Component Map of the Oscillator Strength (ICM-OS) plots and achieve a simple rationalization and insight on the origin and features of the coupling. The resulting possibility of understanding plasmon/fluorophore interactions by simple qualitative arguments opens the way to a rational design of hybrid (plasmon + dye) systems with the desired optical behavior.

6.
J Chem Phys ; 155(8): 084103, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34470368

RESUMEN

We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn-Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn-Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.

7.
Molecules ; 26(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834052

RESUMEN

We report a computational study and analysis of the optical absorption processes of Ag20 and Au20 clusters deposited on the magnesium oxide (100) facet, both regular and including point defects. Ag20 and Au20 are taken as models of metal nanoparticles and their plasmonic response, MgO as a model of a simple oxide support. We consider oxide defects both on the oxygen anion framework (i.e., a neutral oxygen vacancy) and in the magnesium cation framework (i.e., replacing Mg++ with a transition metal: Cu++ or Co++). We relax the clusters' geometries via Density-Functional Theory (DFT) and calculate the photo-absorption spectra via Time-Dependent DFT (TDDFT) simulations on the relaxed geometries. We find that the substrate/cluster interaction induces a broadening and a red-shift of the excited states of the clusters, phenomena that are enhanced by the presence of an oxygen vacancy and its localized excitations. The presence of a transition-metal dopant does not qualitatively affect the spectral profile. However, when it lies next to an oxygen vacancy for Ag20, it can strongly enhance the component of the cluster excitations perpendicular to the surface, thus favoring charge injection.

8.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011325

RESUMEN

We report a computational study at the time-dependent density functional theory (TDDFT) level of the chiro-optical spectra of chiral gold nanowires coupled in dimers. Our goal is to explore whether it is possible to overcome destructive interference in single nanowires that damp chiral response in these systems and to achieve intense plasmonic circular dichroism (CD) through a coupling between the nanostructures. We predict a huge enhancement of circular dichroism at the plasmon resonance when two chiral nanowires are intimately coupled in an achiral relative arrangement. Such an effect is even more pronounced when two chiral nanowires are coupled in a chiral relative arrangement. Individual component maps of rotator strength, partial contributions according to the magnetic dipole component, and induced densities allow us to fully rationalize these findings, thus opening the way to the field of plasmonic CD and its rational design.

9.
J Am Chem Soc ; 142(37): 15799-15814, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32881489

RESUMEN

Understanding the evolution of the structure and properties in metals from molecule-like to bulk-like has been a long sought fundamental question in science, since Faraday's 1857 work. We report the discovery of a Janus nanomolecule, Au191(SPh-tBu)66 having both molecular and metallic characteristics, explored crystallographically and optically and modeled theoretically. Au191 has an anisotropic, singly twinned structure with an Au155 core protected by a ligand shell made of 24 monomeric [-S-Au-S-] and 6 dimeric [-S-Au-S-Au-S-] staples. The Au155 core is composed of an 89-atom inner core and 66 surface atoms, arranged as [Au3@Au23@Au63]@Au66 concentric shells of atoms. The inner core has a monotwinned/stacking-faulted face-centered-cubic (fcc) structure. Structural evolution in metal nanoparticles has been known to progress from multiply twinned, icosahedral, structures in smaller molecular sizes to untwinned bulk-like fcc monocrystalline nanostructures in larger nanoparticles. The monotwinned inner core structure of the ligand capped Au191 nanomolecule provides the critical missing link, and bridges the size-evolution gap between the molecular multiple-twinning regime and the bulk-metal-like particles with untwinned fcc structure. The Janus nature of the nanoparticle is demonstrated by its optical and electronic properties, with metal-like electron-phonon relaxation and molecule-like long-lived excited states. First-principles theoretical explorations of the electronic structure uncovered electronic stabilization through the opening of a shell-closing gap at the top of the occupied manifold of the delocalized electronic superatom spectrum of the inner core. The electronic stabilization together with the inner core geometric stability and the optimally stapled ligand-capping anchor and secure the stability of the entire nanomolecule.

10.
J Chem Phys ; 152(18): 184104, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32414253

RESUMEN

A hybrid approach able to perform Time Dependent Density Functional Theory (TDDFT) simulations with the same accuracy as that of hybrid exchange-correlation (xc-) functionals but at a fraction of the computational cost is developed, implemented, and validated. The scheme, which we name Hybrid Diagonal Approximation (HDA), consists in employing in the response function a hybrid xc-functional (containing a fraction of the non-local Hartree-Fock exchange) only for the diagonal elements of the omega matrix, while the adiabatic local density approximation is employed for the off-diagonal terms. HDA is especially (but not exclusively) advantageous when using Slater type orbital basis sets and allows one to employ them in a uniquely efficient way, as we demonstrate here by implementing HDA in a local version of the Amsterdam Density Functional code. The new protocol is tested on NH3, C6H6, and the [Au25(SCH3)18]- cluster as prototypical cases ranging from small molecules to ligand-protected metal clusters, finding excellent agreement with respect to both full kernel TDDFT simulations and experimental data. Additionally, a specific comparison test between full kernel and HDA is considered at the Casida level on seven other molecular species, which further confirm the accuracy of the approach for all investigated systems. For the [Au25(SCH3)18]- cluster, a speedup by a factor of seven is obtained with respect to the full kernel. The HDA, therefore, promises to provide a quantitative description of the optical properties of medium-sized systems (nanoclusters) at an affordable cost, thanks to its computational efficiency, especially in combination with a complex polarization algorithm version of TDDFT.

11.
Phys Chem Chem Phys ; 21(7): 3585-3596, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30255885

RESUMEN

TDDFT simulations of the absorption and CD spectra of a Pd2Au36(SC2H4Ph)24 monolayer-protected cluster (MPC) are carried out with the aim of investigating the effects of doping, conformational degrees of freedom of the thiolates' end-groups, and charge states on the optical and dichroic response of a prototypical MPC species. Clear signatures of Pd doping in both absorption and CD spectra are found to be a consequence of the participation of Pd (4d) states in the ligand-based d-band and on the unoccupied MOs of lower energy. Exploration of conformational space points to a much greater sensitivity of optical rotation to the conformation of the end-groups of the organic monolayer compared to absorption. Finally, the effect of charge is mainly seen as a decreased dependence of the dichroic response on conformation. The agreement between the TDDFT predictions and the available experimental data is good, and enables an assignment of absorption and CD bands to specific classes of one-particle excitations.

12.
Phys Chem Chem Phys ; 21(10): 5435-5447, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30793143

RESUMEN

The tendency of glycine to form polymer chains on a rutile(110) surface under wet/dry conditions (dry-wet cycles at high temperature) is studied through a conjunction of surface sensitive experimental techniques and sequential periodic multilevel calculations that mimics the experimental procedures with models of decreasing complexity and increasing accuracy. X-ray photoemission spectroscopy (XPS) and thermal desorption spectroscopy (TDS) experimentally confirmed that the dry-wet cycles lead to Gly polymerization on the oxide support. This was supported by all the theoretical characterizations. First, classical reactive molecular dynamics (MD) simulations based on the ReaxFF approach were used to reproduce the adsorption of the experimental glycine solution droplets sprayed onto an oxide support and to identify the most probable arrangement of the molecules that triggered the polymerization mechanisms. Then, quantum chemistry density functional tight binding (DF-TB) MDs and static density functional theory (DFT) calculations were carried out to further explore favorable configurations and to evaluate the energy barriers of the most promising reaction pathways for the peptide bond-formation reactions. The results confirmed the fundamental role played by the substrate to thermodynamically and kinetically favor the process and disclosed its main function as an immobilizing agent: the molecules accommodated in the surface channels close to each other were the ones starting the key events of the dimerization process and the most favorable mechanism was the one where a water molecule acted as a proton exchange mediator in the condensation process.


Asunto(s)
Glicina , Prebióticos , Titanio , Catálisis , Glicina/química , Simulación de Dinámica Molecular , Oxidación-Reducción , Polimerizacion , Titanio/química , Agua/química
13.
Phys Chem Chem Phys ; 20(3): 1707-1715, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29265136

RESUMEN

Melting and sintering of silicon nanoparticles are investigated by means of classical molecular dynamics simulations to disclose the dependence of modelling on the system type, the simulation procedure and interaction potential. The capability of our parametrization of a reactive force field ReaxFF to describe such processes is assessed through a comparison with formally simpler Stillinger-Weber and Tersoff potentials, which are frequently used for simulating silicon-based materials. A substantial dependence of both the predicted melting point and its variation as a function of the nanoparticle size on the simulation model is also highlighted. The outcomes of the molecular dynamics simulations suggest that the trend of the nanoparticulate sintering/coalescence time vs. temperature could provide a valid tool to determine the melting points of nanoparticles theoretically/experimentally.

14.
Angew Chem Int Ed Engl ; 57(5): 1209-1213, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29239093

RESUMEN

A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO→CO2 reaction (COox) is presented. Ag9 Pt2 and Ag9 Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. In situ GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O2 , and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

15.
Phys Chem Chem Phys ; 19(18): 11318-11325, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418063

RESUMEN

We report ab initio results for sub-stoichiometric HfOx with different oxygen vacancy densities, useful in exploring microscopic mechanisms that govern the operation of RRAM devices. We demonstrate that oxygen vacancy filaments are energetically more stable than randomly distributed defects. Furthermore, the stability of the filaments increases with the number of confined oxygen vacancies. Energetic and structural analyses show that bonds between neighboring coordinative unsaturated Hf atoms promote filament stability, and electron trapping, due to electron injection, increases the cohesive energy until the injection is moderate. The highly oxygen deficient configuration of the filaments leads to a substantial lowering of the HfOx band gap, which locally increases the conductivity of the system. Charge injection and electric fields modify the mobility of oxygen ions in the proximity of the filament. The simulations suggest that oxygen ion diffusion can lead to an asymmetric reduction of filament thickness and thus to its progressive disruption where the vacancy cohesion energy is lower.

16.
J Chem Phys ; 147(7): 074301, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28830181

RESUMEN

Ligand-protected Au clusters are non-bleaching fluorescence markers in bio- and medical applications. Here we show that their fluorescence can be an intrinsic property of the Au cluster itself. We find a very intense and sharp fluorescence peak located at λ=739.2 nm (1.68 eV) for Au20 clusters in a Ne matrix held at 6 K. The fluorescence reflects the Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) diabatic bandgap of the cluster. Au20 shows a very rich absorption fine structure reminiscent of well defined molecule-like quantum levels. These levels are resolved since Au20 has only one stable isomer (tetrahedral); therefore our sample is mono-disperse in cluster size and conformation. Density-functional theory (DFT) and time-dependent DFT calculations clarify the nature of optical absorption and predict both main absorption peaks and intrinsic fluorescence in fair agreement with experiment.

17.
J Am Chem Soc ; 137(14): 4610-3, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25834925

RESUMEN

Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

18.
Phys Chem Chem Phys ; 17(42): 27952-67, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25875393

RESUMEN

The optical properties of multi-component metal nanostructures (or nanoalloys) are the subject of an intense and rapidly growing experimental and theoretical activity. In this perspective article, we first provide a survey of the most recent developments in the field, concerning both theoretical methods, especially at the first-principles level, and novel results, distinguishing for the convenience of presentation the sub-field of monolayer-protected multi-component metal clusters from the other alloy nanosystems. We then discuss a few general concepts which can be drawn from this survey, and offer a few suggestions on the most promising directions for future research. We hope that making the point in this fast developing field will provide a framework and a perspective useful to trigger future studies and advancements.

19.
J Am Chem Soc ; 136(42): 14933-40, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25308728

RESUMEN

Here we present the crystal structure, experimental and theoretical characterization of a Au24(SAdm)16 nanomolecule. The composition was verified by X-ray crystallography and mass spectrometry, and its optical and electronic properties were investigated via experiments and first-principles calculations. Most importantly, the focus of this work is to demonstrate how the use of bulky thiolate ligands, such as adamantanethiol, versus the commonly studied phenylethanethiolate ligands leads to a great structural flexibility, where the metal core changes its shape from five-fold to crystalline-like motifs and can adapt to the formation of Au(24±1)(SAdm)16, namely, Au23(SAdm)16, Au24(SAdm)16, and Au25(SAdm)16. The basis for the construction of a thermodynamic phase diagram of Au nanomolecules in terms of ligands and solvent features is also outlined.

20.
Phys Chem Chem Phys ; 16(44): 24256-65, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25297965

RESUMEN

We propose an approach to accelerate the computational exploration and the prediction of the preferred chemical ordering in alloy nanoparticles. This approach, named Grouping Global Optimization (GGO), is based on grouping atoms into equivalence sets constrained to be occupied by the same elemental species, with a consequent significant reduction in the compositional degrees of freedom of the system. The equivalence sets are defined on the basis of point group symmetry or in general of any given order parameter, thus leaving the user a great freedom in the implementation to each specific system. The GGO approach can be used within both systematic and stochastic sampling algorithms as demonstrated by tests conducted on prototypical nanoalloys, namely on Pd-Pt and Ag-Cu binary pairs, as representative of high- or low-miscibility alloys, respectively, and on particles of two different sizes, i.e., truncated octahedra composed of 586 and 4033 atoms. It is found that GGO enables an extremely quick scan of the chemical ordering in nanoalloys containing thousands of atoms and to predict low-energy chemical ordering patterns as a function of size and composition with a modest computational effort even for the larger and symmetry-broken particles. The strategy here proposed should be applicable equally well in other fields than that of nanoalloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA