Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 13(1): 532, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575469

RESUMEN

BACKGROUND: Sprouting angiogenesis is an important mechanism for morphogenetic phenomena, including organ development, wound healing, and tissue regeneration. In regenerative medicine, therapeutic angiogenesis is a clinical solution for recovery from ischemic diseases. Mesenchymal stem cells (MSCs) have been clinically used given their pro-angiogenic effects. MSCs are reported to promote angiogenesis by differentiating into pericytes or other vascular cells or through cell-cell communication using multiple protein-protein interactions. However, how MSCs physically contact and move around ECs to keep the sprouting angiogenesis active remains unknown. METHODS: We proposed a novel framework of EC-MSC crosstalk analysis using human umbilical vein endothelial cells (HUVECs) and MSCs obtained from mice subcutaneous adipose tissue on a 3D in vitro model, microvessel-on-a-chip, which allows cell-to-tissue level study. The microvessels were fabricated and cultured for 10 days in a collagen matrix where MSCs were embedded. RESULTS: Immunofluorescence imaging using a confocal laser microscope showed that MSCs smoothed the surface of the microvessel and elongated the angiogenic sprouts by binding to the microvessel's specific microstructures. Additionally, three-dimensional modeling of HUVEC-MSC intersections revealed that MSCs were selectively located around protrusions or roots of angiogenic sprouts, whose surface curvature was excessively low or high, respectively. CONCLUSIONS: The combination of our microvessel-on-a-chip system for 3D co-culture and image-based crosstalk analysis demonstrated that MSCs are selectively localized to concave-convex surfaces on scaffold structures and that they are responsible for the activation and stabilization of capillary vessels.


Asunto(s)
Células Madre Mesenquimatosas , Neovascularización Fisiológica , Ratones , Humanos , Animales , Comunicación Celular , Células Madre Mesenquimatosas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Dispositivos Laboratorio en un Chip
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA