Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(3): 685-692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979040

RESUMEN

Endogenous RNAs that control posttranscriptional gene expression are microRNAs (miRNAs). These small regulatory molecules play a crucial role in certain biological processes and their expression is often strictly regulated. They are small 21-24 nucleotide molecules that act as major regulators of gene expression at the posttranscriptional level. One of the mechanisms by which miRNAs control the gene expression is to interact the interaction of the seeds with the 3'-end and and more seldom the 5'-end of mRNA transcribed by the target genes. miRNAs have been identified as important cytoplasmic regulators of gene expression. miRNAs function as posttranscriptional regulators of their messenger RNA (mRNA) targets by mRNA degradation and/or translational repression. It is becoming evident, however, that miRNAs have nuclear functions as well. About the cell type, the physiological state of the body, and various external factors, the following explanation will summarize the complex multilevel regulation of miRNA expression. A better understanding of the molecular mechanisms controlling miRNA expression will provide clarification of the variations in the expression of protein-coding genes.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs , Núcleo Celular/metabolismo , Citoplasma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
2.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638885

RESUMEN

Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.


Asunto(s)
Inteligencia Artificial , Productos Agrícolas/genética , Fabaceae/genética , Genómica , Fitomejoramiento , Estrés Fisiológico/genética , Productos Agrícolas/crecimiento & desarrollo , Fabaceae/crecimiento & desarrollo , Sitios de Carácter Cuantitativo
3.
Biomolecules ; 9(6)2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174354

RESUMEN

The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein ß-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of ß-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.


Asunto(s)
Biocombustibles/microbiología , Biomasa , beta-Glucosidasa/metabolismo , Animales , Biocatálisis , Inhibidores Enzimáticos/farmacología , Humanos , beta-Glucosidasa/antagonistas & inhibidores
4.
Rev Environ Contam Toxicol ; 196: 73-93, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19025093

RESUMEN

Lead is a metallic pollutant emanating from various environmental sources including industrial wastes, combustion of fossil fuels, and use of agrochemicals. Lead may exist in the atmosphere as dusts, fumes, mists, and vapors, and in soil as a mineral. Soils along roadsides are rich in lead because vehicles burn leaded gasoline, which contributes to environmental lead pollution. Other important sources of lead pollution are geological weathering, industrial processing of ores and minerals, leaching of lead from solid wastes, and animal and human excreta. Lead is nondegradable, readily enters the food chain, and can subsequently endanger human and animal health. Lead is one of the most important environment pollutants and deserves the increasing attention it has received in recent decades. The present effort was undertaken to review lead stress effects on the physiobiochemical activity of higher plants. Lead has gained considerable attention as a potent heavy metal pollutant because of growing anthropogenic pressure on the environment. Lead-contaminated soils show a sharp decline in crop productivity. Lead is absorbed by plants mainly through the root system and in minor amounts through the leaves. Within the plants, lead accumulates primarily in roots, but some is translocated to aerial plant parts. Soil pH, soil particle size, cation-exchange capacity, as well as root surface area, root exudation, and mycorrhizal transpiration rate affect the availability and uptake of lead by plants. Only a limited amount of lead is translocated from roots to other organs because there are natural plant barriers in the root endodermis. At lethal concentrations, this barrier is broken and lead may enter vascular tissues. Lead in plants may form deposits of various sizes, present mainly in intercellular spaces, cell walls, and vacuoles. Small deposits of this metal are also seen in the endoplasmic reticulum, dictyosome, and dictyosome-derived vesicles. After entering the cells, lead inhibits activities of many enzymes, upsets mineral nutrition and water balance, changes the hormonal status, and affects membrane structure and permeability. Visual, nonspecific symptoms of lead toxicity are stunted growth, chlorosis, and blackening of the root system. In most cases, lead inhibition of enzyme activities results from the interaction of the metal with enzyme -SH groups. The activities of metalloenzymes may decline as a consequence of displacement of an essential metal by lead from the active sites of the enzymes. Lead decreases the photosynthetic rate of plants by distorting chloroplast ultrastructure, diminishing chlorophyll synthesis, obstructing electron transport, and inhibiting activities of Calvin cycle enzymes.


Asunto(s)
Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Plantas/efectos de los fármacos , Plomo/farmacocinética , Nitrógeno/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA