Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pharmaceutics ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065622

RESUMEN

The use of electrospun fibers as anti-inflammatory drug carriers is currently one of the most interesting approaches for the design of drug delivery systems. In recent years, biodegradable polymers blended with naturally derived ones have been extensively studied to fabricate bioinspired platforms capable of driving biological responses by releasing selected molecular/pharmaceutical signals. Here, sodium diclofenac (DicNa)-loaded electrospun fibers, consisting of polycaprolactone (PCL) or gelatin-functionalized PCL, were studied to evaluate fibroblasts' in vitro and in vivo response. In vitro studies demonstrated that cell adhesion of L929 cells (≈70%) was not affected by the presence of DicNa after 4 h. Moreover, the initial burst release of the drug from PD and PGD fibers, e.g., 80 and 48%, respectively, after 5 h-combined with its sustained release-did not produce any cytotoxic effect and did not negatively influence the biological activity of the cells. In particular, it was demonstrated that the addition of gelatin concurred to slow down the release mechanism, thus limiting the antiproliferative effect of DicNa, as confirmed by the significant increase in cell viability and collagen deposition after 7 days, with respect to PCL alone. In vivo studies in a rat subcutaneous model also confirmed the ability of DicNa-loaded fibers to moderate the inflammatory/foreign body response independently through the presence of gelatin that played a significant role in supporting the formation of small-caliber vessels after 10 days of implantation. All of these results suggest using bicomponent fibers loaded with DicNa as a valid therapeutic tool capable of supporting the wound healing process and limiting in vivo inflammation and rejection phenomena.

2.
Pharmaceutics ; 16(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39065577

RESUMEN

The E6 and E7 oncoproteins of high-risk types of human papillomavirus (HR-HPV) are crucial for the development of cervical cancer (CC). Small interfering RNAs (siRNAs) are explored as novel therapies that silence these oncogenes, but their clinical use is hampered by inefficient delivery systems. Modification (pegylation) with polyethylene glycol (PEG) of liposomal siRNA complexes (siRNA lipoplexes) may improve systemic stability. We studied the effect of siRNA targeting HPV16 E6, delivered via cationic liposomes (lipoplexes), on cellular processes in a cervical carcinoma cell line (CaSki) and its potential therapeutic use. Lipoplexes-PEG-HPV16 E6, composed of DOTAP, Chol, DOPE, and DSPE-PEG2000 were prepared. The results showed that pegylation (5% DSPE-PEG2000) provided stable siRNA protection, with a particle size of 86.42 ± 3.19 nm and a complexation efficiency of over 80%; the siRNA remained stable for 30 days. These lipoplexes significantly reduced HPV16 E6 protein levels and restored p53 protein expression, inhibiting carcinogenic processes such as proliferation by 25.74%, migration (95.7%), and cell invasion (97.8%) at concentrations of 20 nM, 200 nM, and 80 nM, respectively. In conclusion, cationic lipoplexes-PEG-HPV16 E6 show promise as siRNA carriers for silencing HPV16 E6 in CC.

3.
Sci Rep ; 14(1): 8075, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580685

RESUMEN

During the preparation of fixed prosthesis (including individual bridges and crowns) it is important to select the materials that have the best features and properties to predict a successful clinical treatment. The objective of this study was to determine if the chemical and structural characteristics could cause to increase the fracture resistance, we used four bis-acryl resins Luxatemp, Protemp, Structur and Telio. Three-points bending by Flexural test were performed in ten bars and they were carried out to compare with Anova test. In addition, the bis-acryl resins were analyzed by scanning electron microscopy, to analyze microstructure and morphology and the molecular structure were performed by Infrared Spectroscopy through Attenuated Total Reflectance. A higher flexural strength was found in Luxatemp and Structur with, no significant differences between this study groups. Regarding Protemp and Telio, these study groups showed a lower flexural strength when were compared with Luxatemp and Structur. These results corroborate SEM and ATR analysis because Luxatemp sample showed a regular size particle on the surface and chemically presents a long cross-linkage polymer chain. The presence of CO3, SiO2 and N-H groups as a fillers particle interacting with OH groups cause a higher flexural strength compared with another groups.

4.
Biomedicines ; 9(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34440140

RESUMEN

The FDA's approval of peptide drugs such as Ziconotide or Exendin for pain relief and diabetes treatment, respectively, enhanced the interest to explore novel conotoxins from Conus species venom. In general, conotoxins can be used in pathologies where voltage-gated channels, membrane receptors, or ligands alter normal physiological functions, as in metabolic diseases such as Type 2 diabetes. In this study, the synthetic cal14.2b (s-cal14.2b) from the unusual Californiconus californicus demonstrated bioactivity on NIT-1 insulinoma cell lines stimulating insulin secretion detecting by high performance liquid chromatography (HPLC). Accordingly, s-cal14.2b increased the CaV1.2/1.3 channel-current by 35 ± 4% with a recovery τ of 10.3 ± 4 s in primary cell culture of rat pancreatic ß-cells. The in vivo results indicated a similar effect of insulin secretion on mice in the glucose tolerance curve model by reducing the glucose from 500 mg/dL to 106 mg/dL in 60 min, compared to the negative control of 325 mg/dL at the same time. The PET-SCAN with radiolabeling 99mTc-s-cal14.2b demonstrated biodistribution and accumulation in rat pancreas with complete depuration in 24 h. These findings show the potential therapeutic use of s-cal14.2b in endocrinal pathologies such as early stages of Type 2 Diabetes where the pancreas's capability to produce insulin is still effective.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32775319

RESUMEN

In the last two decades, alginate scaffolds have been variously studied as extracellular matrix analogs for tissue engineering. However, relevant evidence is still lacking concerning their ability to mimic the microenvironment of hierarchical tissues such as bone. Hence, an increasing amount of attention has recently been devoted to the fabrication of macro/microporous sponges with pore anisotropy able to more accurately replicate the cell niche structure as a trigger for bioactive functionalities. This paper presents an in vivo study of alginate sponges with anisotropic microporous domains (MAS) formed by ionic crosslinking in the presence of different fractions (30 or 50% v) of hydroxyapatite (HA). In comparison with unloaded sponges (MAS0), we demonstrated that HA confers peculiar physical and biological properties to the sponge, depending upon the inorganic fraction used, enabling the sponge to bio-mimetically support the regeneration of newly formed bone. Scanning electron microscopy analysis showed a preferential orientation of pores, ascribable to the physical constraints exerted by HA particles during the pore network formation. Energy dispersive spectroscopy (EDS) and X-Ray diffraction (XRD) confirmed a chemical affinity of HA with the native mineral phase of the bone. In vitro studies via WST-1 assay showed good adhesion and proliferation of human Dental Pulp-Mesenchymal Stem Cells (hDP-MSC) that increased in the presence of the bioactive HA signals. Moreover, in vivo studies via micro-CT and histological analyses of a bone model (e.g., a rat calvaria defect) confirmed that the maximum osteogenic response after 90 days was achieved with MAS30, which supported good regeneration of the calvaria defect without any evidence of inflammatory reaction. Hence, all of the results suggested that MAS is a promising scaffold for supporting the regeneration of hard tissues in different body compartments.

6.
Arch Oral Biol ; 101: 165-171, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30951954

RESUMEN

GOAL: Evaluate bone regeneration in a critical size bone defect model in the jaw of healthy rats as a function of gender and defect location. DESIGN: A series of microCT and histological studies were performed to evaluate the process of bone regeneration in rats with a mandibular critical size defect. Rats were placed in two groups according to gender and sorted in terms of bone defect location. Bone regeneration rate and hydroxyapatite concentration were assessed with microCT imaging at specific times after surgery. Histological analysis was also performed to evaluate bone regeneration. RESULTS: No more that 85% of bone regeneration was observed after 60 days, with a low rate constant (K) indicating a slow restoration of the defect. Assessment of microCT images showed partial closure of the defect in all cases, which was confirmed by histological analysis. Hydroxyapatite concentration values revealed that regenerated bone was not fully calcified. No statistically significant differences in terms of gender or defect location were found. CONCLUSION: The defect model studied here, located in the jaw of healthy rats, shows potential as a preclinical critical size bone defect model to evaluate bone regeneration therapies in the fields of dentistry and maxillofacial surgery.


Asunto(s)
Regeneración Ósea , Hueso Cortical/patología , Mandíbula/patología , Animales , Durapatita/análisis , Femenino , Masculino , Ratas , Microtomografía por Rayos X
7.
Cancers (Basel) ; 11(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583528

RESUMEN

The standard treatment for glioblastoma multiforme (GBM) is surgery followed by chemo/radiotherapy. A major limitation on patient improvement is the high resistance of tumors to drug treatment, likely responsible for their subsequent recurrence and rapid progression. Therefore, alternatives to the standard therapy are necessary. The aim of the present study was to evaluate whether mifepristone, an antihormonal agent, has a synergistic effect with temozolomide (used in standard therapy for gliomas). Whereas the mechanism of temozolomide involves damage to tumor DNA leading to apoptosis, tumor resistance is associated with DNA damage repair through the O6-methylguanine-DNA-methyltransferase (MGMT) enzyme. Temozolomide/mifepristone treatment, herein examined in Wistar rats after orthotopically implanting C6 glioma cells, markedly reduced proliferation. This was evidenced by a decreased level of the following parameters: a proliferation marker (Ki-67), a tumor growth marker (18F-fluorothymidine uptake, determined by PET/CT images), and the MGMT enzyme. Increased apoptosis was detected by the relative expression of related proteins, (e.g. Bcl-2 (B-cell lymphoma 2), Bax (bcl-2-like protein 4) and caspase-3). Thus, greater apoptosis of tumor cells caused by their diminished capacity to repair DNA probably contributed significantly to the enhanced activity of temozolomide. The results suggest that mifepristone could possibly act as a chemo-sensitizing agent for temozolomide during chemotherapy for GBM.

8.
J Biomed Mater Res B Appl Biomater ; 106(6): 2435-2446, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29193687

RESUMEN

Poly(lactic acid) (PLA) is one of the most promising renewable and biodegradable polymers for mimic extracellular matrix for tissue engineering applications. In this work, PLA spun membrane scaffold were successfully prepared by air jet spinning technology. Morphology, mechanical properties, in vitro biocompatibility, and in vitro and in vivo degradation of PLA fibrous scaffold were characterized by X-ray diffraction, Fourier Transform Infrared, and scanning electron microscope (SEM). Morphological results assessed by SEM analyses indicated that PLA scaffolds possessed an average fiber diameter of approximately 0.558 ± 0.141 µm for 7% w/v of PLA and approximately 0.647 ± 0.137 µm for 10% w/v. Interestingly, our results showed that the nanofiber size of PLA scaffold allow structural stability after 100 days of in vitro degradation in Ringer solution where the average fiber diameter were of approximately 0.633 ± 0.147 µm for 7% w/v and approximately 0.645 ± 0.140 µm for 10% w/v of PLA. Mechanical properties of PLA fibers scaffold after in vitro degradation showed decrease in terms of flexibility elongation, and less energy was needed to achieve maximal elastic deformation. The fiber size exerts an influence on the biological response of human Bone Marrow Mesenchymal Stromal Cells as confirmed by MTT assay after 9 days of cell culture and the in vivo degradation assay of 7% w/v and 10% w/v of PLA scaffold, did not demonstrate evidence of toxicity with a mild inflammatory respond. In conclusion, airbrushing technology promises to be a viable and attractive alternative technique for producing a biocompatible PLA nanofiber scaffold that could be considered for tissue engineering regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2435-2446, 2018.


Asunto(s)
Células de la Médula Ósea/metabolismo , Ensayo de Materiales , Células Madre Mesenquimatosas/metabolismo , Nanofibras/química , Poliésteres/química , Andamios del Tejido/química , Animales , Células de la Médula Ósea/citología , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Tamaño de la Partícula , Ratas , Ratas Wistar
9.
Odovtos (En línea) ; 21(3): 77-88, Sep.-Dec. 2019. graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1091494

RESUMEN

ABSTRACT In recent years, tissue engineering has evolved considerably, due to the problems in the biomedical area concerning tissue regeneration therapies. Currently, work has been focused on the synthesis and physicochemical characterization of poly lactic acid scaffolds, a synthetic polyester that has been extensively study for its excellent biocompatibility and biodegradability. Moreover, sterilization strategies of scaffold are a crucial step for its application in tissue regeneration, however, the sterilization process have to maintain the structural and biochemical properties of the scaffold. Therefore, it is very important to carry out studies on the sterilization methods of the sample's material, since translational medicine is intended for in vivo applications. The aim of the present study was designed to analyze the effects of different sterilization techniques, i.e. ethylene oxide (ETO), gamma radiation (GR) and hydrogen peroxide- based plasma (H2O2) in biodegradable PLA scaffolds, and to determine the best sterilization technique to render a sterile product with minimal degradation and deformation, and good tissue response. Analysis of surface morphology showed that ETO and GR modified the PLA scaffolds without any change in its chemical composition. Moreover, the histological response showed that the scaffolds are biocompatible and those sterilized by GR showed a more severe inflammatory response, accompanied with the presence of giant foreign body cells. In conclusion, the results show that among sterilization techniques used in the preset study, the best results were observed with H2O2 sterilization, since it did not significantly modify the surface structure of the PLA fibers and their in vivo response did not cause an unfavorable tissue reaction.


RESUMEN En los últimos años, la ingeniería de tejidos ha evolucionado considerablemente, debido a las incógnitas en las terapias de regeneración en el área biomédica. Actualmente, se ha trabajado en la síntesis y caracterización fisicoquímica de andamios de poliácido láctico, el cual es un polímero sintético que se ha estudiado para aplicaciones en ingeniería de tejidos, debido a su biocompatibilidad y biodegradabilidad. El proceso de esterilización es un paso crucial en la aplicación de andamios en terapias de regeneración, sin embargo, la técnica de esterilización debe mantener las propiedades estructurales y bioquímicas del andamio. Por lo tanto, es muy importante realizar estudios sobre los métodos de esterilización de dichos andamios, ya que la medicina traslacional está diseñada para aplicaciones in vivo. El objetivo del presente estudio fue analizar los efectos de diferentes técnicas de esterilización como óxido de etileno (ETO), radiación gamma (GR) y plasma a base de peróxido de hidrógeno (H2O2) en andamios biodegradables de PLA, y determinar la mejor técnica de esterilización con mínima degradación y deformación, así como una respuesta tisular favorable. La estructura de la superficie de los andamios de PLA se modificó principalmente con las técnicas de óxido de etileno y radiación gamma, sin embargo, ninguna técnica modificó su composición química. Con la respuesta histológica se demostró que los andamios de PLA son biocompatibles y que los esterilizados por radiación gamma desencadenan una mayor respuesta inflamatoria y la formación de células gigantes de cuerpo extraño. En conclusión, los resultados muestran que las técnicas de esterilización utilizadas pueden modificar la morfología del andamio, sin embargo; los mejores resultados se observaron con la esterilización por plasma a base de peróxido de hidrógeno, ya que no modificó significativamente la estructura de la superficie de las fibras de PLA y su respuesta in vivo no provocó una reacción desfavorable en el tejido.


Asunto(s)
Materiales Biomédicos y Dentales , Esterilización , Óxido de Etileno/análisis , Andamios del Tejido , Hexaclorociclohexano , Compómeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA