Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cells ; 37(3): 417-429, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548157

RESUMEN

Mutations in key transcription factors SOX2 and P63 were linked with developmental defects and postnatal abnormalities such as corneal opacification, neovascularization, and blindness. The latter phenotypes suggest that SOX2 and P63 may be involved in corneal epithelial regeneration. Although P63 has been shown to be a key regulator of limbal stem cells, the expression pattern and function of SOX2 in the adult cornea remained unclear. Here, we show that SOX2 regulates P63 to control corneal epithelial stem/progenitor cell function. SOX2 and P63 were co-expressed in the stem/progenitor cell compartments of the murine cornea in vivo and in undifferentiated human limbal epithelial stem/progenitor cells in vitro. In line, a new consensus site that allows SOX2-mediated regulation of P63 enhancer was identified while repression of SOX2 reduced P63 expression, suggesting that SOX2 is upstream to P63. Importantly, knockdown of SOX2 significantly attenuated cell proliferation, long-term colony-forming potential of stem/progenitor cells, and induced robust cell differentiation. However, this effect was reverted by forced expression of P63, suggesting that SOX2 acts, at least in part, through P63. Finally, miR-450b was identified as a direct repressor of SOX2 that was required for SOX2/P63 downregulation and cell differentiation. Altogether, we propose that SOX2/P63 pathway is an essential regulator of corneal stem/progenitor cells while mutations in SOX2 or P63 may disrupt epithelial regeneration, leading to loss of corneal transparency and blindness. Stem Cells 2019;37:417-429.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Epitelio Corneal/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Alcaloides , Animales , Ratones , Células 3T3 NIH , Piperidinas , Factores de Transcripción SOXB1/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
2.
Proc Natl Acad Sci U S A ; 110(6): 2152-6, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23355677

RESUMEN

Ectodermal dysplasia is a group of congenital syndromes affecting a variety of ectodermal derivatives. Among them, ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome is caused by single point mutations in the p63 gene, which controls epidermal development and homeostasis. Phenotypic defects of the EEC syndrome include skin defects and limbal stem-cell deficiency. In this study, we designed a unique cellular model that recapitulated major embryonic defects related to EEC. Fibroblasts from healthy donors and EEC patients carrying two different point mutations in the DNA binding domain of p63 were reprogrammed into induced pluripotent stem cell (iPSC) lines. EEC-iPSC from both patients showed early ectodermal commitment into K18(+) cells but failed to further differentiate into K14(+) cells (epidermis/limbus) or K3/K12(+) cells (corneal epithelium). APR-246 (PRIMA-1(MET)), a small compound that restores functionality of mutant p53 in human tumor cells, could revert corneal epithelial lineage commitment and reinstate a normal p63-related signaling pathway. This study illustrates the relevance of iPSC for p63 related disorders and paves the way for future therapy of EEC.


Asunto(s)
Labio Leporino/tratamiento farmacológico , Labio Leporino/patología , Fisura del Paladar/tratamiento farmacológico , Fisura del Paladar/patología , Displasia Ectodérmica/tratamiento farmacológico , Displasia Ectodérmica/patología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Quinuclidinas/farmacología , Sitios de Unión/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Labio Leporino/genética , Labio Leporino/metabolismo , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio Corneal/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Puntual , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Stem Cells ; 30(5): 898-909, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22367714

RESUMEN

Approximately 6 million people worldwide are suffering from severe visual impairments or blindness due to corneal diseases. Corneal allogeneic transplantation is often required to restore vision; however, shortage in corneal grafts and immunorejections remain major challenges. The molecular basis of corneal diseases is poorly understood largely due to lack of appropriate cellular models. Here, we described a robust differentiation of human-induced pluripotent stem cells (hiPSCs) derived from hair follicles or skin fibroblasts into corneal epithelial-like cells. We found that BMP4, coupled with corneal fibroblast-derived conditioned medium and collagen IV allowed efficient corneal epithelial commitment of hiPSCs in a manner that recapitulated corneal epithelial lineage development with high purity. Organotypic reconstitution assays suggested the ability of these cells to stratify into a corneal-like epithelium. This model allowed us identifying miR-450b-5p as a molecular switch of Pax6, a major regulator of eye development. miR-450b-5p and Pax6 were reciprocally distributed at the presumptive epidermis and ocular surface, respectively. miR-450b-5p inhibited Pax6 expression and corneal epithelial fate in vitro, altogether, suggesting that by repressing Pax6, miR-450b-5p triggers epidermal specification of the ectoderm, while its absence allows ocular epithelial development. Additionally, miR-184 was detectable in early eye development and corneal epithelial differentiation of hiPSCs. The knockdown of miR-184 resulted in a decrease in Pax6 and K3, in line with recent findings showing that a point mutation in miR-184 leads to corneal dystrophy. Altogether, these data indicate that hiPSCs are valuable for modeling corneal development and may pave the way for future cell-based therapy.


Asunto(s)
Linaje de la Célula/fisiología , Córnea/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , MicroARNs/biosíntesis , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular/fisiología , Córnea/citología , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/genética , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Humanos , Ratones , MicroARNs/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Células Madre Pluripotentes/citología , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética
4.
Stem Cell Reports ; 9(6): 1991-2004, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29198823

RESUMEN

miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis.


Asunto(s)
Ceguera/genética , Diferenciación Celular/genética , Epidermis/crecimiento & desarrollo , MicroARNs/genética , Animales , Ceguera/patología , Proliferación Celular/genética , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Queratina-15/genética , Ratones , Ratones Noqueados , Oxigenasas de Función Mixta/genética , Fosfoproteínas/genética , Receptores Notch/genética , Transducción de Señal/genética , Células Madre/metabolismo , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA