Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 410, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976076

RESUMEN

We characterise a reversible bacterial zinc-containing benzyl alcohol dehydrogenase (BaDH) accepting either NAD+ or NADP+ as a redox cofactor. Remarkably, its redox cofactor specificity is pH-dependent with the phosphorylated cofactors favored at lower and the dephospho-forms at higher pH. BaDH also shows different steady-state kinetic behavior with the two cofactor forms. From a structural model, the pH-dependent shift may affect the charge of a histidine in the 2'-phosphate-binding pocket of the redox cofactor binding site. The enzyme is phylogenetically affiliated to a new subbranch of the Zn-containing alcohol dehydrogenases, which share this conserved residue. BaDH appears to have some specificity for its substrate, but also turns over many substituted benzyl alcohol and benzaldehyde variants, as well as compounds containing a conjugated C=C double bond with the aldehyde carbonyl group. However, compounds with an sp3-hybridised C next to the alcohol/aldehyde group are not or only weakly turned over. The enzyme appears to contain a Zn in its catalytic site and a mixture of Zn and Fe in its structural metal-binding site. Moreover, we demonstrate the use of BaDH in an enzyme cascade reaction with an acid-reducing tungsten enzyme to reduce benzoate to benzyl alcohol. KEY POINTS: •Zn-containing BaDH has activity with either NAD + or NADP+ at different pH optima. •BaDH converts a broad range of substrates. •BaDH is used in a cascade reaction for the reduction of benzoate to benzyl alcohol.


Asunto(s)
Oxidorreductasas de Alcohol , Alcohol Bencilo , Coenzimas , NADP , Oxidación-Reducción , Zinc , Concentración de Iones de Hidrógeno , NADP/metabolismo , Especificidad por Sustrato , Alcohol Bencilo/metabolismo , Alcohol Bencilo/química , Cinética , Zinc/metabolismo , Coenzimas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , NAD/metabolismo , Benzaldehídos/metabolismo , Benzaldehídos/química , Dominio Catalítico , Sitios de Unión , Filogenia , Modelos Moleculares
2.
J Sep Sci ; 46(14): e2300106, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37147926

RESUMEN

The amino acid footprint of different beer samples was analyzed using ion chromatography coupled with electrospray ionization mass spectrometry. A tailor-made polymer-based cation-exchange resin was operated with a mass spectrometry-compatible eluent under isocratic conditions on a standard high-performance liquid chromatography system coupled to a single quadrupole mass spectrometer using formic acid as a volatile eluent ion source. The partially separated peaks of the isomeric pair isoleucine/leucine were processed according to their area response ratio using vertical peak splitting or Gaussian fit. Additionally, the chromatographic resolution of the isomers was optimized with an adjusted, solely aqueous mobile phase from 0.85 to 2.92. Ion suppression in the electrospray ion source was investigated for the derivatization-free method and found to be insignificant (recovery value 100 ± 15%) for 15 out of the 20 analytes. Quantitative results for various beer and mixed-beer beverages were found to be in high agreement with existing methods. Simultaneous photometric detection demonstrated the method's ability to successfully remove most of the interfering matrix compounds.

3.
J Biol Chem ; 295(27): 9087-9104, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32404365

RESUMEN

When faced with increased osmolarity in the environment, many bacterial cells accumulate the compatible solute ectoine and its derivative 5-hydroxyectoine. Both compounds are not only potent osmostress protectants, but also serve as effective chemical chaperones stabilizing protein functionality. Ectoines are energy-rich nitrogen and carbon sources that have an ecological impact that shapes microbial communities. Although the biochemistry of ectoine and 5-hydroxyectoine biosynthesis is well understood, our understanding of their catabolism is only rudimentary. Here, we combined biochemical and structural approaches to unravel the core of ectoine and 5-hydroxy-ectoine catabolisms. We show that a conserved enzyme bimodule consisting of the EutD ectoine/5-hydroxyectoine hydrolase and the EutE deacetylase degrades both ectoines. We determined the high-resolution crystal structures of both enzymes, derived from the salt-tolerant bacteria Ruegeria pomeroyi and Halomonas elongata These structures, either in their apo-forms or in forms capturing substrates or intermediates, provided detailed insights into the catalytic cores of the EutD and EutE enzymes. The combined biochemical and structural results indicate that the EutD homodimer opens the pyrimidine ring of ectoine through an unusual covalent intermediate, N-α-2 acetyl-l-2,4-diaminobutyrate (α-ADABA). We found that α-ADABA is then deacetylated by the zinc-dependent EutE monomer into diaminobutyric acid (DABA), which is further catabolized to l-aspartate. We observed that the EutD-EutE bimodule synthesizes exclusively the α-, but not the γ-isomers of ADABA or hydroxy-ADABA. Of note, α-ADABA is known to induce the MocR/GabR-type repressor EnuR, which controls the expression of many ectoine catabolic genes clusters. We conclude that hydroxy-α-ADABA might serve a similar function.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Osmorregulación/fisiología , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Regulación Bacteriana de la Expresión Génica/genética , Halomonas/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/ultraestructura , Hidrolasas/metabolismo , Hidrolasas/ultraestructura , Chaperonas Moleculares/metabolismo , Familia de Multigenes , Rhodobacteraceae/metabolismo
4.
Environ Microbiol ; 20(1): 305-323, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29159878

RESUMEN

Arsenic, a highly cytotoxic and cancerogenic metalloid, is brought into the biosphere through geochemical sources and anthropogenic activities. A global biogeochemical arsenic biotransformation cycle exists in which inorganic arsenic species are transformed into organoarsenicals, which are subsequently mineralized again into inorganic arsenic compounds. Microorganisms contribute to this biotransformation process greatly and one of the organoarsenicals synthesized and degraded in this cycle is arsenobetaine. Its nitrogen-containing homologue glycine betaine is probably the most frequently used compatible solute on Earth. Arsenobetaine is found in marine and terrestrial habitats and even in deep-sea hydrothermal vent ecosystems. Despite its ubiquitous occurrence, the biological function of arsenobetaine has not been comprehensively addressed. Using Bacillus subtilis as a well-understood platform for the study of microbial osmostress adjustment systems, we ascribe here to arsenobetaine both a protective function against high osmolarity and a cytoprotective role against extremes in low and high growth temperatures. We define a biosynthetic route for arsenobetaine from the precursor arsenocholine that relies on enzymes and genetic regulatory circuits for glycine betaine formation from choline, identify the uptake systems for arsenobetaine and arsenocholine, and describe crystal structures of ligand-binding proteins from the OpuA and OpuB ABC transporters complexed with either arsenobetaine or arsenocholine.


Asunto(s)
Arsenicales/metabolismo , Bacillus subtilis/metabolismo , Presión Osmótica , Temperatura , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Biotransformación , Colina/metabolismo , Citoprotección , Concentración Osmolar
5.
J Biol Chem ; 291(23): 11993-2002, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27048649

RESUMEN

Electron-transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) from Acidaminococcus fermentans catalyze the endergonic reduction of ferredoxin by NADH, which is also driven by the concomitant reduction of crotonyl-CoA by NADH, a process called electron bifurcation. Here we show that recombinant flavodoxin from A. fermentans produced in Escherichia coli can replace ferredoxin with almost equal efficiency. After complete reduction of the yellow quinone to the blue semiquinone, a second 1.4 times faster electron transfer affords the colorless hydroquinone. Mediated by a hydrogenase, protons reoxidize the fully reduced flavodoxin or ferredoxin to the semi-reduced species. In this hydrogen-generating system, both electron carriers act catalytically with apparent Km = 0.26 µm ferredoxin or 0.42 µm flavodoxin. Membrane preparations of A. fermentans contain a highly active ferredoxin/flavodoxin-NAD(+) reductase (Rnf) that catalyzes the irreversible reduction of flavodoxin by NADH to the blue semiquinone. Using flavodoxin hydroquinone or reduced ferredoxin obtained by electron bifurcation, Rnf can be measured in the forward direction, whereby one NADH is recycled, resulting in the simple equation: crotonyl-CoA + NADH + H(+) = butyryl-CoA + NAD(+) with Km = 1.4 µm ferredoxin or 2.0 µm flavodoxin. This reaction requires Na(+) (Km = 0.12 mm) or Li(+) (Km = 0.25 mm) for activity, indicating that Rnf acts as a Na(+) pump. The redox potential of the quinone/semiquinone couple of flavodoxin (Fld) is much higher than that of the semiquinone/hydroquinone couple. With free riboflavin, the opposite is the case. Based on this behavior, we refine our previous mechanism of electron bifurcation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavoproteínas Transportadoras de Electrones/metabolismo , NAD/metabolismo , Oxidorreductasas/metabolismo , Sodio/metabolismo , Acidaminococcus/enzimología , Acidaminococcus/genética , Acidaminococcus/metabolismo , Acilcoenzima A/metabolismo , Benzoquinonas/metabolismo , Butiril-CoA Deshidrogenasa/metabolismo , Catálisis , Transporte de Electrón , Flavoproteínas Transportadoras de Electrones/genética , Electrones , Hidrógeno/metabolismo , Hidroquinonas/metabolismo , Cinética , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Riboflavina/metabolismo , Espectrofotometría
6.
J Appl Toxicol ; 36(8): 1038-47, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26651060

RESUMEN

Human apolipoprotein A-I preparations reconstituted with phospholipids (reconstituted high-density lipoprotein [HDL]) have been used in a large number of animal and human studies to investigate the physiological role of apolipoprotein A-I. Several of these studies observed that intravenous infusion of reconstituted HDL might cause transient elevations in plasma levels of hepatic enzymes. Here we describe the mechanism of this enzyme release. Observations from several animal models and in vitro studies suggest that the extent of hepatic transaminase release (alanine aminotransferase [ALT]) correlates with the movement of hepatic cholesterol into the blood after infusion. Both the amount of ALT release and cholesterol movement were dependent on the amount and type of phospholipid present in the reconstituted HDL. As cholesterol is known to dissolve readily in phospholipid, an HDL preparation was loaded with cholesterol before infusion into rats to assess the role of diffusion of cholesterol out of the liver and into the reconstituted HDL. Cholesterol-loaded HDL failed to withdraw cholesterol from tissues and subsequently failed to cause ALT release. To investigate further the role of cholesterol diffusion, we employed mice deficient in SR-BI, a transporter that facilitates spontaneous movement of cholesterol between cell membranes and HDL. These mice showed substantially lower movement of cholesterol into the blood and markedly lower ALT release. We conclude that initial depletion of hepatic cholesterol initiates transient ALT release in response to infusion of reconstituted HDL. This effect may be controlled by appropriate choice of the type and amount of phospholipid in reconstituted HDL. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Alanina Transaminasa/sangre , HDL-Colesterol/metabolismo , Hígado/metabolismo , Fosfolípidos/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Administración Intravenosa , Animales , Apolipoproteína A-I/sangre , Antígenos CD36/genética , Antígenos CD36/metabolismo , Colesterol/sangre , HDL-Colesterol/sangre , Perros , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Conejos , Ratas , Ratas Sprague-Dawley
7.
Clin Oral Investig ; 19(8): 1965-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25689983

RESUMEN

OBJECTIVES: The aim of this in vitro study was to investigate the demineralization rate in human enamel after interproximal polishing (IPP) and to detect possible correlations with the IPP method used, with special emphasis on the surface characteristics of the enamel being treated. MATERIALS AND METHODS: This in vitro study tested five IPP systems (Profin Directional System®, Intensiv ProxoStrip®, OS discs®, ARS Safe-Tipped Bur Kit® and Ortho-Strips Set®) that are currently available on the market. Each of the five examination groups comprised 12 randomly selected teeth, while the control group consisted of six teeth. The teeth were placed in an artificial model for each group. The proximal contacts were then resolved by IPP. To allow detection of any surface characteristics, one surface was not further processed after IPP, while the other side was additionally polished. After IPP, the teeth were exposed to a pH-cycling model with alternating phases of demineralization and remineralization. Substance loss was analyzed using optical emission spectrometry. Data were subjected to simple analysis of variance (ANOVA) performed with Tukey's test. Comparison between the groups with and without polishing was conducted using the t test for independent samples. The significance level was set at p < 0.05. RESULTS: Demineralization significantly increased after IPP. The rates of demineralization differed significantly among the examination groups, with the greatest loss of substance being produced with Sheridan's Air-Rotor Stripping® system (ARS; 145.34 ± 20.37 µm). In all of the examination groups, subsequent polishing of the surfaces did not significantly reduce the amount of demineralization (polished 119.64 ± 28.61 µm; unpolished 114.16 ± 28.61 µm). CONCLUSION: No correlation between surface morphology and the degree of susceptibility of human enamel was detected. However, it must be taken into consideration that there was no potential bacterial colonization in this in vitro erosive set-up. Thus, in contrast to previous explanations, the outermost fluorapatite layer and the individual composition of the enamel may have a greater impact on the solubility of the enamel and the amount of enamel loss after IPP than the type of system used and the resulting surface texture. CLINICAL RELEVANCE: Whenever the outermost layer of enamel is reduced, the practitioner must expect an increase in demineralization. Subsequent polishing does not appear to affect the amount of demineralization.


Asunto(s)
Esmalte Dental , Pulido Dental/efectos adversos , Desmineralización Dental , Esmalte Dental/metabolismo , Esmalte Dental/patología , Humanos , Desmineralización Dental/etiología , Desmineralización Dental/metabolismo , Desmineralización Dental/patología
8.
J Bacteriol ; 196(2): 483-92, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214948

RESUMEN

Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD(+) and NADP(+) as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Fenilalanina/metabolismo , Rhodocyclaceae/enzimología , Rhodocyclaceae/metabolismo , Anaerobiosis , Coenzimas/metabolismo , Redes y Vías Metabólicas/genética , NAD/metabolismo , NADP/metabolismo , Nitratos/metabolismo , Oxidación-Reducción , Fenilacetatos/metabolismo , Rhodocyclaceae/genética , Tungsteno/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 307(10): L791-9, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25239913

RESUMEN

Hemeoxygenase-1 (HO-1), an inducible heat shock protein, is upregulated in response to multiple cellular insults via oxidative stress, lipopolysaccharides (LPS), and hypoxia. In this study, we investigated in vitro the role of Toll-like receptor 4 (TLR4), hypoxia-inducible factor 1α (HIF-1α), and iron on HO-1 expression in cystic fibrosis (CF). Immunohistochemical analysis of TLR4, HO-1, ferritin, and HIF-1α were performed on lung sections of CFTR-/- and wild-type mice. CFBE41o- and 16HBE14o- cell lines were employed for in vitro analysis via immunoblotting, immunofluorescence, real-time PCR, luciferase reporter gene analysis, and iron quantification. We observed a reduced TLR4, HIF-1α, HO-1, and ferritin in CFBE41o- cell line and CF mice. Knockdown studies using TLR4-siRNA in 16HBE14o- revealed significant decrease of HO-1, confirming the role of TLR4 in HO-1 downregulation. Inhibition of HO-1 using tin protoporphyrin in 16HBE14o- cells resulted in increased iron levels, suggesting a probable role of HO-1 in iron accumulation. Additionally, sequestration of excess iron using iron chelators resulted in increased hypoxia response element response in CFBE41o- and 16HBE14o-, implicating a role of iron in HIF-1α stabilization and HO-1. To conclude, our in vitro results demonstrate that multiple regulatory factors, such as impaired TLR4 surface expression, increased intracellular iron, and decreased HIF-1α, downregulate HO-1 expression in CFBE41o- cells.


Asunto(s)
Bronquios/metabolismo , Fibrosis Quística/metabolismo , Regulación hacia Abajo , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/biosíntesis , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Hierro/metabolismo , Proteínas de la Membrana/biosíntesis , Mucosa Respiratoria/metabolismo , Receptor Toll-Like 4/biosíntesis , Animales , Bronquios/patología , Línea Celular , Fibrosis Quística/genética , Fibrosis Quística/patología , Estabilidad de Enzimas/genética , Células Epiteliales/patología , Hemo-Oxigenasa 1/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mucosa Respiratoria/patología , Receptor Toll-Like 4/genética
10.
Small ; 10(1): 201-8, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24038884

RESUMEN

Ultrasound mediated facile ligand exchange method in suspension for the formation of polystyrene-grafted silver nanoparticles is reported. Amazingly, this method allows even grafting of very high molecular weight polystyrenes (up to 217 200 g mol(-1) ) having a single terminal thiol group at the chain end. Detailed studies are carried out to gain insights in the role of molecular weight of the ligands and the mechanism of the ligand exchange reactions. Key factors are determined to be the droplet formation by ultrasonification and low silver content, which enhances the availability of the terminal thiol end group significantly. The extraordinary compatibility of the ligand exchange method in particular regarding high molecular weights is attributed to hydrophilic orientation of the terminal thiol groups at the liquid-liquid interphase. This is proved conclusively by using an in situ method as a reference approach in which agglomeration occurs at considerably lower molecular weights due to the absence of preferred end group orientation within the polymer coil. In homogeneous phase only the chain length is found to be the crucial factor in stabilization of silver nanoparticles.

11.
J Chromatogr A ; 1695: 463934, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36972662

RESUMEN

Cation-exchange stationary phases were characterized in different chromatographic modes (HILIC, RPLC, IC) and applied to the separation of non-charged hydrophobic and hydrophilic analytes. The set of columns under investigation included both commercially available cation-exchangers and self-prepared PS/DVB-based columns, the latter consisting of adjustable amounts of carboxylic and sulfonic acid functional groups. The influence of cation-exchange site and polymer substrate on the multimodal properties of cation-exchangers was identified using selectivity parameters, polymer imaging and excess adsorption isotherms. Introducing weakly acidic cation-exchange functional groups to the unmodified PS/DVB-substrate effectively reduced hydrophobic interactions, whilst a low degree of sulfonation (0.09 to 0.27% w/w sulphur) mainly influenced electrostatic interactions. Silica substrate was found to be another important factor for inducing hydrophilic interactions. The presented results demonstrate that cation-exchange resins are suitable for mixed-mode applications and offer versatile selectivity.


Asunto(s)
Cromatografía , Dióxido de Silicio , Cromatografía/métodos , Dióxido de Silicio/química , Resinas de Intercambio de Catión , Interacciones Hidrofóbicas e Hidrofílicas , Cationes/química , Polímeros , Cromatografía por Intercambio Iónico/métodos
12.
J Biol Chem ; 286(3): 2245-60, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21051545

RESUMEN

Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Compuestos Férricos/metabolismo , Oxidorreductasas/metabolismo , Bacillus/química , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Compuestos Férricos/química , Eliminación de Gen , Oxidorreductasas/química , Oxidorreductasas/genética , Sideróforos/química , Sideróforos/genética , Sideróforos/metabolismo
13.
J Chromatogr A ; 1664: 462790, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-34999304

RESUMEN

Mixed-acidic cation-exchange (MCX) columns with both strongly (SCX) and weakly (WCX) acidic functional groups were developed for the separation of standard amino acids. The resins were prepared by carboxylation of highly crosslinked monodisperse poly(styrene-divinylbenzene) copolymer particles with performic acid and subsequent sulfonation with sulfuric acid. The degree of functionalization was varied independently for each processing step and controlled by measuring pH dependent retention of the obtained resins. A series of mixed-acidic resins with different SCX/WCX-ratios was chromatographically characterized by variation of formic acid and acetonitrile concentration in the aqueous eluent. The overall cation-exchange capacity was varied from 33 to 68 µmol/mL. The comparison with two commercial columns (Metrohm Metrosep C6, WCX and Hamilton PRP X-200, SCX) revealed the additive character of the different functional group properties within MCX columns and a unique selectivity which can be adjusted by both eluent composition and SCX/WCX-ratio of the resin. The retention window between neutral and basic amino acids was altered by varying the amount of sulfonic acid groups attached to the polymer. Orthogonality plots demonstrated constant selectivity for neutral amino acids. Correlating the retention data with log P data demonstrated the influence of non-ionic hydrophobic and π-π-interactions for the separation of amino acids on PS/DVB-based cation-exchangers. An isocratic IC-ESI-MS method was developed to separate and quantitate 20 underivatized standard amino acids within 30 min. Limits of detection were between 4 and 64 nmol L-1 and a high linearity of calibration curves was obtained for all analytes. The method was validated by comparing a certified reference standard with external calibration data.


Asunto(s)
Aminas , Aminoácidos , Ácidos , Cationes , Cromatografía por Intercambio Iónico
14.
ACS Catal ; 12(14): 8707-8717, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35874620

RESUMEN

Tungsten-dependent aldehyde oxidoreductases (AORs) catalyze the oxidation of aldehydes to acids and are the only known enzymes reducing non-activated acids using electron donors with low redox potentials. We report here that AOR from Aromatoleum aromaticum (AOR Aa ) catalyzes the reduction of organic acids not only with low-potential Eu(II) or Ti(III) complexes but also with H2 as an electron donor. Additionally, AOR Aa catalyzes the H2-dependent reduction of NAD+ or benzyl viologen. The rate of H2-dependent NAD+ reduction equals to 10% of that of aldehyde oxidation, representing the highest H2 turnover rate observed among the Mo/W enzymes. As AOR Aa simultaneously catalyzes the reduction of acids and NAD+, we designed a cascade reaction utilizing a NAD(P)H-dependent alcohol dehydrogenase to reduce organic acids to the corresponding alcohols with H2 as the only reductant. The newly discovered W-hydrogenase side activity of AOR Aa may find applications in either NADH recycling or conversion of carboxylic acids to more useful biochemicals.

15.
FEBS J ; 289(18): 5599-5616, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35313080

RESUMEN

Anaerobic toluene degradation involves ß-oxidation of the first intermediate (R)-2-benzylsuccinate to succinyl-CoA and benzoyl-CoA. Here, we characterize the last enzyme of this pathway, (S)-2-benzoylsuccinyl-CoA thiolase (BbsAB). Although benzoylsuccinyl-CoA is not available for enzyme assays, the recombinantly produced enzymes from two different species showed the reverse activity, benzoylsuccinyl-CoA formation from benzoyl-CoA and succinyl-CoA. Activity depended on the presence of both subunits, the thiolase family member BbsB and the Zn-finger protein BbsA, which is affiliated to the DUF35 family of unknown function. We determined the structure of BbsAB from Geobacter metallireducens with and without bound CoA at 1.7 and 2.0 Å resolution, respectively. CoA binding into the well-known thiolase cavity triggers an induced-fit movement of the highly disordered covering loop, resulting in its rigidification by forming multiple interactions to the outstretched CoA moiety. This event is coupled with an 8 Å movement of an adjacent hairpin loop of BbsB and the C-terminal domain of BbsA. Thereby, CoA is placed into a catalytically productive conformation, and a putative second CoA binding site involving BbsA and the partner BbsB' subunit is simultaneously formed that also reaches the active center. Therefore, while maintaining the standard thioester-dependent Claisen-type mechanism, BbsAB represents a new type of thiolase.


Asunto(s)
Tolueno , Zinc , Anaerobiosis , Conformación Molecular , Tolueno/metabolismo
16.
Chembiochem ; 12(13): 2052-61, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21744456

RESUMEN

Frataxin homologues are important iron chaperones in eukarya and prokarya. Using a native proteomics approach we were able to identify the structural frataxin homologue Fra (formerly YdhG) of Bacillus subtilis and to quantify its native iron-binding stoichiometry. Using recombinant proteins we could show in vitro that Fra is able to transfer iron onto the B. subtilis SUF system for iron-sulfur cluster biosynthesis. In a four-constituents reconstitution system (including SufU, SufS, Fra and CitB) we observed a Fra-dependent formation of a [4 Fe-4 S] cluster on SufU that could be efficiently transferred onto the target apo-aconitase (CitB). A Δfra deletion mutant showed a severe growth phenotype associated with a broadly disturbed iron homeostasis; this indicates that Fra is a central component of intracellular iron channeling in B. subtilis.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Bacillus subtilis/genética , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Espectrometría de Masas , Chaperonas Moleculares/metabolismo , Proteómica , Frataxina
17.
Arterioscler Thromb Vasc Biol ; 30(9): 1733-40, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20595649

RESUMEN

OBJECTIVE: To validate the hypothesis that the toxic heavy metal lead (Pb) may be linked to cardiovascular diseases via the initiation of atherosclerosis, in vivo and in vitro studies were conducted. METHODS AND RESULTS: During the human study part of this project, serum Pb levels of healthy young women were correlated to carotid intima-media thickness. Multivariate logistic regression analyses showed that increased serum Pb levels were significantly associated with an increased intima-media thickness (P=0.01; odds ratio per SD unit, 1.6 [95% CI, 1.1 to 2.4]). In vitro, Pb induced an increase in interleukin 8 production and secretion by vascular endothelial cells. Nuclear factor erythroid 2-related factor-2 is the crucial transcription factor involved in Pb-induced upregulation of interleukin 8. Endothelial cell-secreted interleukin 8 triggered intimal invasion of smooth muscle cells and enhanced intimal thickening in an arterial organ culture model. This phenomenon was further enhanced by Pb-increased elastin synthesis of smooth muscle cells. CONCLUSIONS: Our data support the hypothesis that Pb is a novel, independent, and significant risk factor for intimal hyperplasia.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Interleucina-8/metabolismo , Plomo/toxicidad , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Túnica Íntima/efectos de los fármacos , Adolescente , Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Células Cultivadas , Relación Dosis-Respuesta a Droga , Elastina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Proteínas de Choque Térmico/metabolismo , Humanos , Hiperplasia , Plomo/sangre , Plomo/metabolismo , Modelos Logísticos , Arterias Mamarias/efectos de los fármacos , Arterias Mamarias/metabolismo , Arterias Mamarias/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Oportunidad Relativa , Técnicas de Cultivo de Órganos , Arteria Radial/efectos de los fármacos , Arteria Radial/metabolismo , Arteria Radial/patología , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores de Tiempo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Ultrasonografía , Regulación hacia Arriba , Adulto Joven
18.
Front Microbiol ; 12: 764731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003002

RESUMEN

The compatible solutes ectoine and 5-hydroxyectoine are widely synthesized by bacteria as osmostress protectants. These nitrogen-rich tetrahydropyrimidines can also be exploited as nutrients by microorganisms. Many ectoine/5-hydroxyectoine catabolic gene clusters are associated with a regulatory gene (enuR: ectoine nutrient utilization regulator) encoding a repressor protein belonging to the MocR/GabR sub-family of GntR-type transcription factors. Focusing on EnuR from the marine bacterium Ruegeria pomeroyi, we show that the dimerization of EnuR is mediated by its aminotransferase domain. This domain can fold independently from its amino-terminal DNA reading head and can incorporate pyridoxal-5'-phosphate (PLP) as cofactor. The covalent attachment of PLP to residue Lys302 of EnuR was proven by mass-spectrometry. PLP interacts with system-specific, ectoine and 5-hydroxyectoine-derived inducers: alpha-acetyldiaminobutyric acid (alpha-ADABA), and hydroxy-alpha-acetyldiaminobutyric acid (hydroxy-alpha-ADABA), respectively. These inducers are generated in cells actively growing with ectoines as sole carbon and nitrogen sources, by the EutD hydrolase and targeted metabolic analysis allowed their detection. EnuR binds these effector molecules with affinities in the low micro-molar range. Studies addressing the evolutionary conservation of EnuR, modelling of the EnuR structure, and docking experiments with the inducers provide an initial view into the cofactor and effector binding cavity. In this cavity, the two high-affinity inducers for EnuR, alpha-ADABA and hydroxy-alpha-ADABA, are positioned such that their respective primary nitrogen group can chemically interact with PLP. Purified EnuR bound with micro-molar affinity to a 48 base pair DNA fragment containing the sigma-70 type substrate-inducible promoter for the ectoine/5-hydroxyectoine importer and catabolic gene cluster. Consistent with the function of EnuR as a repressor, the core elements of the promoter overlap with two predicted EnuR operators. Our data lend themselves to a straightforward regulatory model for the initial encounter of EnuR-possessing ectoine/5-hydroxyectoine consumers with environmental ectoines and for the situation when the external supply of these compounds has been exhausted by catabolism.

19.
J Bacteriol ; 192(10): 2512-24, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20233928

RESUMEN

Copper and iron are essential elements for cellular growth. Although bacteria have to overcome limitations of these metals by affine and selective uptake, excessive amounts of both metals are toxic for the cells. Here we investigated the influences of copper stress on iron homeostasis in Bacillus subtilis, and we present evidence that copper excess leads to imbalances of intracellular iron metabolism by disturbing assembly of iron-sulfur cofactors. Connections between copper and iron homeostasis were initially observed in microarray studies showing upregulation of Fur-dependent genes under conditions of copper excess. This effect was found to be relieved in a csoR mutant showing constitutive copper efflux. In contrast, stronger Fur-dependent gene induction was found in a copper efflux-deficient copA mutant. A significant induction of the PerR regulon was not observed under copper stress, indicating that oxidative stress did not play a major role under these conditions. Intracellular iron and copper quantification revealed that the total iron content was stable during different states of copper excess or efflux and hence that global iron limitation did not account for copper-dependent Fur derepression. Strikingly, the microarray data for copper stress revealed a broad effect on the expression of genes coding for iron-sulfur cluster biogenesis (suf genes) and associated pathways such as cysteine biosynthesis and genes coding for iron-sulfur cluster proteins. Since these effects suggested an interaction of copper and iron-sulfur cluster maturation, a mutant with a conditional mutation of sufU, encoding the essential iron-sulfur scaffold protein in B. subtilis, was assayed for copper sensitivity, and its growth was found to be highly susceptible to copper stress. Further, different intracellular levels of SufU were found to influence the strength of Fur-dependent gene expression. By investigating the influence of copper on cluster-loaded SufU in vitro, Cu(I) was found to destabilize the scaffolded cluster at submicromolar concentrations. Thus, by interfering with iron-sulfur cluster formation, copper stress leads to enhanced expression of cluster scaffold and target proteins as well as iron and sulfur acquisition pathways, suggesting a possible feedback strategy to reestablish cluster biogenesis.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Cobre/farmacología , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Aminoácidos/metabolismo , Western Blotting , Cobre/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Estabilidad Proteica/efectos de los fármacos
20.
Arterioscler Thromb Vasc Biol ; 29(9): 1392-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19556524

RESUMEN

OBJECTIVE: Although cadmium (Cd) is an important and common environmental pollutant and has been linked to cardiovascular diseases, little is known about its effects in initial stages of atherosclerosis. METHODS AND RESULTS: In the 195 young healthy women of the Atherosclerosis Risk Factors in Female Youngsters (ARFY) study, cadmium (Cd) level was independently associated with early atherosclerotic vessel wall thickening (intima-media thickness exceeding the 90th percentile of the distribution; multivariable OR 1.6[1.1.-2.3], P=0.016). In line, Cd-fed ApoE knockout mice yielded a significantly increased aortic plaque surface compared to controls (9.5 versus 26.0 mm(2), P<0.004). In vitro results indicate that physiological doses of Cd increase vascular endothelial permeability up to 6-fold by (1) inhibition of endothelial cell proliferation, and (2) induction of a caspase-independent but Bcl-xL-inhibitable form of cell death more than 72 hours after Cd addition. Both phenomena are preceded by Cd-induced DNA strand breaks and a cellular DNA damage response. Zinc showed a potent protective effect against deleterious effects of Cd both in the in vitro and human studies. CONCLUSIONS: Our research suggests Cd has promoting effects on early human and murine atherosclerosis, which were partly offset by high Zn concentrations.


Asunto(s)
Aterosclerosis/inducido químicamente , Cadmio/efectos adversos , Enfermedades de las Arterias Carótidas/inducido químicamente , Contaminantes Ambientales/efectos adversos , Adolescente , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/patología , Biomarcadores/sangre , Cadmio/sangre , Cloruro de Cadmio/toxicidad , Permeabilidad Capilar/efectos de los fármacos , Enfermedades de las Arterias Carótidas/patología , Muerte Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cloruros/farmacología , Roturas del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Contaminantes Ambientales/sangre , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Modelos Logísticos , Ratones , Ratones Noqueados , Oportunidad Relativa , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Adulto Joven , Compuestos de Zinc/farmacología , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA